说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三重积分
1)  triple integral
三重积分
1.
Application of triple integral based on Monte Carlo method;
蒙特卡罗方法在三重积分中的应用
2.
Demonstration of transformation formulae of triple integral;
三重积分变换公式的证明
3.
Demonstration of transformation formulae of triple integral and Application;
三重积分变量替换公式的证明及应用
2)  triple integral equations
三重积分方程
3)  triple scalar product
三重标积
4)  triple scalar product
三重内积
5)  triplication formulae
三重数积
6)  triple product
三重积
补充资料:多重积分


多重积分
I

  多重积分【m日ti沙抽峡,1;即aTB戚IIHTe印盯] 多变量函数的一种定积分.有几种不同的多重积分概念(R允rr以Im积分,此bes胖积分,玩比邵胆一Stie-ltjes积分,等等). 重Rien坦Lnn积分是以玉川白n测度(Jo宜坛n能a-s眠)拜为基础的.设E为n维E孤lid空间R”中的一Jo攻场n可测集,拌。为n维为已汕测度,并设:={E,})一,为E的一个分划,即一组Jorchn可测集E:,满足U卜:E。=E且拼。(E‘自E,)=0(i护j,i,j=1,…,n).令d(E。)表示E‘的直径,量 占:=n以xd(E,) f~.,,k称为分划:的网格(mesh of the paltjtion).若f(x)(x=(x.,‘·‘,x。”为在E上定义的函数,则任何形如 k a一‘·(f;亡‘”,“‘,“‘,)一各f(“‘,)。·(“,), 别‘)‘E“:的和称为函数f的Rjen旧田n积分和(R打nann inte脚1sUIn)·若lim‘,一。叮:存在且不依赖于特殊的分划序列,则此极限称为f在E上的n重Ri日比以nn积分(n~tup】eR七m田min唤归1)并记成 ff(二)d、或f…ff(二,..…二_、d:.…d二_. 若“E.函数f本身称为RIOrr以朋可积的(Rjen正比田illteg-mble)或简称R可积的(R一泊忱脚b」e). 当。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条