1) F-expansion method
F展开法
1.
Solving KdV equation with variable coefficients by using F-expansion method;
用F展开法解变系数KdV方程
2.
The extended F-expansion method and new exact solutions of the generalized KdV equation
修正的F展开法和推广的KdV方程新的孤波解和精确解
3.
The F-expansion method which can be used to solve nonlinear equations has been summarized.
对求解非线性方程的F展开法进行了综述,揭示了方法的内在本质,指出了F展开法可能的发展方向,并结合F展开法的最新进展,给出了一个辅助常微分方程,借助它可求解具有高次非线性项的非线性偏微分方程。
2) F-expansion
F展开法
1.
Solving Sine-Gordon Equation by F-expansion;
用F展开法解Sine-Gordon方程
2.
Applications of F-expansion to Periodic Wave Solutions for KdV Equation;
应用F展开法求KdV方程的周期波解(英文)
3) F-expansion
F-展开法
1.
By using Mathematica and the F-expansion method recently proposed on the base of analogic method,homogeneous balance method and Jacobi method,the double periodic wave solutions expressed by Jacobi elliptic functions for the(n+1)-dimensional Sinh-Gordon equation .
然后由行波约化将其常微分方程化,在拟设法、齐次平衡法和Jacobi椭圆函数法的基础上,借助Mathematica软件和新近提出的F-展开法,求出并研究了(n+1)维SG方程的Jacobi椭圆函数表示的双周期波解,分析了解的结构,在极限情况下这些解退化为相应的孤立波解、三角函数解和奇异行波解。
2.
By applying F-expansion this paper obtains a number of new periodic wave solutions expressed by various Jacobi elliptic functions of the dispersive long wave equations in 2+1 dimensions.
利用F-展开法,求出了非线性耦合Klein-Gordon方程组的许多新的由Jacobi椭圆函数表示的周期波解。
3.
By applying F-expansion we obtain a number of new periodic wave solutions expressed by various Jacobi elliptic functions of the dispersive long wave equations in 2+1 dimensions.
利用F-展开法,求出了(2+1)维扩散长波方程组的许多新的由Jacobi椭圆函数表示的周期波解。
4) F-expantion method
F-展开法
1.
In the paper,according to homogeneous balance principle and F-expantion method,some double-periodic exact solutions of a fifth-order KdV-like equation with variable coefficients are obtained in form of Jacobi elliptic function.
利用齐次平衡原则和F-展开法,求出了一个五阶变系数KdV-like方程的一些用Jacobi椭圆函数表示的双周期解。
2.
In the paper,according to homogeneous balance principle and F-expantion method,some double-periodic wave exact solutions of a fifth-order KdV-like equation is obtained,in the form of Jacobi elliptic function.
根据齐次平衡原则和F-展开法,求出了五阶KdV-like方程一些用Jacobi椭圆函数表示的双周期解。
3.
In the paper,we mainly use homogeneous balance principle and F-expantion method to obtain some exact solutions of a nonlinear Pochhammer-chree equation.
根据齐次平衡原则和F-展开法,求出了非线性Pochhammer-Chree方程一些用Jacobi椭圆函数表示的双周期解。
5) F-expansion method
F-展开法
1.
Solving Variant Boussinesq equations by using F-expansion method;
用F-展开法解Variant Boussinesq方程组
2.
In this paper,the F-expansion method is used to solve the coupled Schrodinger and KdV equations with computerized symbolic computation.
借助于计算机符号计算技术,利用F-展开法求得耦合Schrodinger-KdV方程的精确解,其中包括三角函数解、双曲函数解和椭圆函数解,其精确解在等离子体物理中有着广泛的应用。
3.
In this paper,exact soliton solutions of Hirota-Satsuma equations are worked out by applying the F-expansion method and computer algebra software Mathematica.
该文应用F-展开法和计算机代数系统M athem atica求解了非线性发展方程H irota-Satsum a方程组,并获得了新的精确孤立波解。
6) extended F-expansion method
扩展F-展开法
1.
By using extended F-expansion method,a number of exact solutions,which are expressed by Jacobi elliptic functions to nonlinear evolutional equations with variable coefficients were found.
利用扩展F-展开法求出了一个变系数非线性演化方程更多个以Jacobi椭圆函数表示的精确解,当模数m→1或m→0时,可得到类孤立波解和三角函数表示的精确解。
2.
By using the extended F-expansion method recently proposed,a number of periodic wave solutions to the nonlinear equation with variable are obtained,which are expressed by Jacobi elliptic functions.
直接利用扩展F-展开法求出了一个变系数非线性演化方程的更多个以Jacobi椭圆函数表示的精确解。
3.
With the coupled Burgers system,this paper deduces a number of solutions expressed by hyperbolic solitary wave function,triangular function and rational function,by applying the extended F-expansion method and Riccati equations.
针对耦合Burgers系统,采用扩展F-展开法和Ricctia方程辅助,通过Maple辅助计算得到了双曲函数扭状孤波解、三角函数周期解和有理函数解。
补充资料:上行展开法
分子式:
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条