1) modified F-expansion method
改进的F-展开法
1.
In this paper,we solve some fifth-order nonlinear evolution equations by using modified F-expansion method,and obtain abundant new exact solutions.
应用改进的F-展开法求解一类五阶非线性发展方程,获得了该方程的大量新的精确解。
2.
By using a modified F-expansion method,rich families of exact solutions of DGH equation with strong dispersive term have been obtained,including soliton-like solutions,trigonometric function solutions and rational solutions.
利用改进的F-展开法,求出了一类带强色散项DGH方程的一系列类孤子解,三角函数周期解和有理数解,方程结合了KdV方程的线性色散项和C-H方程的非线性色散项。
3.
In this paper, the major contents conclude: under Homogeneous balance idea, a modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of nonlinear PDEs.
本文研究的主要内容:在齐次平衡原则的思想下,充分利用F-展开法和Riccati方程在非线性偏微分方程(PDES)求解中的优良特性,提出一种改进的F-展开法。
2) improved F-expansion method
改进的F-展开方法
1.
The improved F-expansion method is proposed more recently and,by using the improved F- expansion method,many exact solutions for a class of nonlinear coupled Klein-Gordon equations are con- structed.
改进了最近提出的F-展开方法,并且利用改进的F-展开方法构造了一类非线性藕合Klein- Gordon方程的精确解。
3) the extended tanh-function method
改进的tanh函数展开法
1.
By utilizing the auxiliary ordinary differential equation and its solutions,the first kind and second kind of KdV equation with variable coefficients were investigated by means of the extended tanh-function method,and abundant new exact solitary wave solutions were obtained under certain conditions.
利用该方程及其解,采用改进的tanh函数展开法研究了第1类和第2类变系数KdV方程,获得了在一定条件下的若干新精确孤波解。
4) improved truncated expansion method
改进的截断展开法
1.
We give a new improved truncated expansion method.
给出了一种改进的截断展开法,利用此方法借助于计算机符号计算求得了Burgers方程和浅水长波近似方程组的精确解,其中包括孤子解,并讨论其具体应用。
5) modified F-expansion mothed
修正的F-展开法
6) F-expansion method
F展开法
1.
Solving KdV equation with variable coefficients by using F-expansion method;
用F展开法解变系数KdV方程
2.
The extended F-expansion method and new exact solutions of the generalized KdV equation
修正的F展开法和推广的KdV方程新的孤波解和精确解
3.
The F-expansion method which can be used to solve nonlinear equations has been summarized.
对求解非线性方程的F展开法进行了综述,揭示了方法的内在本质,指出了F展开法可能的发展方向,并结合F展开法的最新进展,给出了一个辅助常微分方程,借助它可求解具有高次非线性项的非线性偏微分方程。
补充资料:上行展开法
分子式:
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条