1) locally Lipschitz function
局部Lipschitz函数
1.
In this paper,the solution existence for quasilinear hemivariational inequality was analyzed using the variational method and the nonsmooth critical point theory of the locally Lipschitz function.
我们的方法是变分法及局部Lipschitz函数的非光滑临界点理论。
2.
This paper discusses the generalization of the deformation theorem and its application,and some new critical point theorems of locally Lipschitz functions are given based on some improved classical critical point theorems.
证明了一个形变定理,并由此得到局部Lipschitz函数的几个临界点定理,其结果改进了几个经典的临界点结论。
3.
In the present paper,some minimax theorems of locally Lipschitz functions are given by the Ekeland variational principle and tow critical point theorems are improved.
文章由Ekeland变分原理得到局部Lipschitz函数的几个极大极小定理,并改进了已有的两个临界点定理。
2) Locally Lipschitz Continuous Function
局部Lipschitz连续函数
3) locally Lipschitz function
局部Lipschitz泛函
1.
Asymptotic minimum theorem of locally Lipschitz function and application;
局部Lipschitz泛函渐近极值定理及其应用
4) globally Lipschitz continuous
全局Lipschitz连续函数
6) K-locally Lipschitz
K-局部Lipschitz
补充资料:函数的局部逼近
函数的局部逼近
local approximation of fimctions
函数的局部逼近【】以川a即rO:应na石阅of加叫出创旧;二oK幼‘。oe nPo6二H二eu,e中yllK颐,益」 集合EC=R“上函数f的一种逼近度量(特别是最佳逼近(比tapproximation)度量).主要问题是研究当m巴E~O时一个函数局部逼近的性态.在某些情形下,可借助函数的局部逼近来刻画被逼近函数的光滑阶,设E。(f;(:,刀))为区间(:,刀)(a蕊:<刀(b)上。次代数多项式对函数fcC【a,b]的最佳逼近.下述结论成立:函数f在la,b]上各点有。十1阶连续导数的充分必要条件是 奥琴兰典真卫一月‘x、,a簇x簇“· 气P一“夕对口~x,,一x,:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条