1) asymptotically stable attractive region
渐近稳定吸引域
1.
This paper analyses in qualities and quantities the quadratic delay discrete singular systems by using Lyapunov s method, and estimates quantitatively the uniformly stable attractive region and asymptotically stable attractive region around zero for the quadratic delay discrete singular systems.
本文利用Lyapunov方法对二次滞后离散奇异系统进行定性、定量分析并给出了该类系统的零解一致稳定吸引域和渐近稳定吸引域的定量估计。
2) asymptotic stability domains
渐近稳定域
1.
By constructing the appropriate v function,the positive invariance properties and positive precompactness of a kind of nonlinear systems was proved,which is used to research the stability and the attractiveness,the criterion of the estimates of asymptotic stability domains was derived,the result of Liapunov asymptotic stability domains in previous document was improved.
通过构造合适的v函数,证明了一类非线性系统的正不变性质和正准紧性质,利用该系统的正不变性质和正准紧性质研究了系统的稳定性和吸引性,得到了该系统渐近稳定域估计的判别条件,推广并改进了已有文献中Liapunov渐近稳定域的结果。
3) stability attraction region
稳定吸引域
1.
In nonlinear case,based on the results of [5]about the Jacobian conjecture,the method gives two algorithms for estimating the stability attraction region of plane systems.
对于非线性系统,基于Jacobian 猜想的已知结果[5] ,该方法给出平面非线性系统稳定吸引域估计的一种算法。
4) regional asymptotic stability
区域渐近稳定性
1.
The regional asymptotic stability (or attractability) and uniformly persistence are discussed.
研究了一类具有标准传染率的两种群相互竞争的自治类型的S(易感者) I(染病者) S(易感者)传染病模型,讨论了平衡点的区域渐近稳定性(或吸引性)和系统的一致持续生存。
2.
The regional asymptotic stability of the equilibrium points is discussed.
研究了一类两种群相互竞争的自治类型的SIS(易感者 染病者 易感者 )传染病模型 ,讨论了平衡点的区域渐近稳定性 。
5) asymptotic stability region
渐近稳定区域
1.
The authors have established a quantitative stability result of quadratic delay difference systems, in which the delay r >0 is an arbitrary integer, also, for quadratic delay difference systems of simple form they have given the estimates of stability region and asymptotic stability region with the delay r<r * , where r * is the maximum admissible value of delay under certain conditions.
曾建立了二次式时滞差分系统定量的稳定性结果,其中时滞r>0是任意的整数;也曾对形式较为简单的二次式时滞差分系统作出了时滞r<r*时的稳定区域和渐近稳定区域估计,其中r*是在一定条件下的最大可接受的时滞。
2.
That is,under certain conditions one can not only confirm the uniform stability and uniform asymptotic stability of the zero solution,but also estimate the corresponding stability region and asymptotic stability region.
初步建立了二次式时滞差分系统定量的稳定性理论,即在一定的条件下,不仅可以断言零解的一致稳定性和一致渐近稳定性,且可以估计出相应的稳定区域和渐近稳定区域。
3.
This paper discusses discrete_delay singular systems by using Lyapunov s method and estimates the size of the uniformly stable region and asymptotic stability region around zero for discrete_delay singular systems.
利用Lyapunov方法讨论离散滞后广义系统 ,并给出了该类系统的零解一致稳定区域和渐近稳定区域的大小估计 。
6) asymptotically stable
渐近稳定
1.
Then,the Lyapunov function,linear matrix inequality(LMI) methods were used to derive a sufficient condition,which could ensure that the NCS was asymptotically stable.
然后采用李亚普诺夫函数、线性矩阵不等式的方法推导出了该网络化控制系统渐近稳定的充分条件。
2.
The Lyapunov function,linear matrix inequality(LMI) methods are used to derive a sufficient condition,which can guarantee that the NCS is asymptotically stable.
针对一类具有等式约束的网络控制系统控制器、采样周期以及最大允许延迟时间的设计问题,采用李亚普诺夫函数、线性矩阵不等式的方法,推导出了该网络控制系统渐近稳定的充分条件。
3.
The local optimal controller gain which ensures that network control system is asymptotically stable and that there exists maximum-variable interval was designed,and a theorem for the stability of state feedback network control systems was .
假定延时恒定且小于1个采样周期,采用Lyapunov函数、线性矩阵不等式(LMI)以及区间矩阵的概念,对状态反馈回路网络化的控制系统控制器增益进行设计,以寻求某个局部最优控制器增益,使网络化控制系统渐近稳定并同时使该控制器增益可变区间达到最大。
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条