1) Genus 2
亏格2
2) genus
[英]['dʒi:nəs] [美]['dʒinəs]
亏格
1.
On 3-connected cubic graphs whose maximum genus attains the lower bound;
关于最大亏格达到下界的三连通三正则简单图(英文)
2.
In this paper,on the basis of joint trees introduced by Yanpei Liu and by dividing the associated surfaces into segments layer by layer,we show that the genus of K5*eK5*e…*eK5 is 「n/2」, where n is the number of K5.
3)的亏格为「n/2﹁。
3.
At the basis of joint trees introduced by Yanpei Liu, by using the method which sorts the embedding surfaces of these graphs,the genus distribution of the orientable embeddings for a type of new graphs are provided.
在刘彦佩提出的联树法的基础上,通过分类一类新图类的可定向嵌入曲面求出了这类图类的可定向嵌入的亏格分布。
3) genus distribution
亏格分布
1.
At the basis of joint trees introduced by Yanpei Liu, by using the method which sorts the embedding surfaces of these graphs,the genus distribution of the orientable embeddings for a type of new graphs are provided.
在刘彦佩提出的联树法的基础上,通过分类一类新图类的可定向嵌入曲面求出了这类图类的可定向嵌入的亏格分布。
2.
In this paper,expressions of the genus distribution for certain sets of surfaces are provided.
本文求出了一些曲面集的亏格分布的显式表达式。
3.
In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in .
本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式。
4) Heegaard genus
Heegaard亏格
1.
On a class of Heegaard genuses of self-amalgamated 3-manifolds;
关于一类自融合三维流形的Heegaard亏格
5) maximum genus
最大亏格
1.
Maximum Genus of Graphs Embedded in the Klein Bottle;
嵌入在克莱茵瓶上的图的最大亏格
2.
The maximum genus of two-connected graphs with diameter three;
一类直径为3的2-连通图的最大亏格
6) inner genus
内亏格
1.
A SD-splitting (M;H_1,H_2;F_0) for bordered 3-manifold M is of inner genus 1 if Fo is a punctured torus.
称(M;H_1,H_2;F_0)为内亏格1若F_0为穿孔环面。
补充资料:算术亏格
算术亏格
arithmetic genus
算术亏格l斌山me‘e ge.us田脚冲~盛pqjl 代数簇(al郎braic variety)的一个数值不变量.对卜(域人上的)任意一个射影簇X、如果它的不可约分支都是。维的,并且由环衬兀一,T月的齐次理想I定义、则亨水季铮戈ari‘hme‘ic罗n、。)几(X)通过I的HIlbe对多项式‘场Ibert pol卯omial)甲(I,”:飞的常数项价(I,0),用下列公式表示: 尸万(X)段(一l)八(尹(I,O)一l工这个古典定义归功于卜.Severl。!11).在1般情形下它等价于以一卜定L袱 几(万)二f一l)月械大一,口x)一l)、这里 x(太飞户、)二艺(一l)‘dim、H‘(X,口、) 才一二O是簇X的系数在结构层、*内的Euler特征标在这种形式下算术亏格的定义可应用到任何完全代数簇,并且这个定义也表明几因相对于双正则映射的不变性.若万是非奇异连通簇,并且k=C是复数域,则 月一l p。(万)二乏玩一,(X) 了二口这里,*(X)是XL一正则微分人形式的空间的维数.当n“t,2时,这样的定义是由意大利儿何学派给出的.例如,若。二l则几因是曲线X的亏格;若n=2, P。‘X)二一q+岛·这里,是曲面丫的作正则性,八,是无的几何亏格(gc-omCtrlC巴ntl写,.对于正规簇X上的除子D,0.Zariskl创厄【1})定义虚算术亏格(virtual ar一tl一metle genus)p。(D)为D所对应的凝聚层厂、〔D)的Hjlbert多项式的常数项.若除一子D与D尸代数等价,则有 凡(D)Pa‘D‘). 当域介的特征为零时,算术亏格是双有理不变量在般的情形下,目前矛197,)仅对维数n蕊3的情形得到了证明
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条