说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 曲面演化
1)  surface evolution
曲面演化
1.
Image zoom based on curve and surface evolution;
基于曲线曲面演化的图像放大方法
2)  Level Set Evolutional Surfaces
Level Set演化曲面
1.
Studies on Modelling and Analysis of Protein Molecular Field with Level Set Evolutional Surfaces
基于Level Set演化曲面的蛋白质分子场建模与特征分析研究
3)  curves evolving
曲线演化
1.
Three numerical value schemes of curves evolving based on mean curvature motion;
曲率驱动的曲线演化的三类数值方案
2.
An MRI image segmentation algorithm is presented by unifying fuzzy C-means clustering and curves evolving.
提出了结合模糊C均值聚类和曲线演化的MRT图像分割算法。
4)  curve evolution
曲线演化
1.
Level set method is a powerful method in solving the curve evolution problem.
水平集算法是一种解决曲线演化问题的有效方法 ,它能够解决一般方法难以处理的拓扑结构变化问题 。
2.
In the paper,we present a novel algorithm of image segmentation based on the curve evolution of level-set theory.
本文算法利用水平集理论的曲线演化方法,提出了一种新的图像分割算法。
3.
Then a partial differential equation(PDE) of curve evolution is obtained by minimizing the energy functional.
其次,最小化能量泛函,得到曲线演化偏微分方程,水平集方法数值求解,最终完成SAR图像的分割。
5)  evolving curve
演化曲线
1.
The evolving curve converges to object boundaries in a relatively short time.
预分割的结果直接作为窄带变分水平集模型的初始轮廓,演化曲线在很短的时间内准确收敛到待分割物体的边缘。
6)  Interface evolution
界面演化
1.
Based on the complexity topological change in the process of the interface evolution,a local level set algorithm for interface evolution was presented in this paper.
论文基于界面演化过程中的复杂拓扑变化,提出一种界面演化的局部水平集算法,解决了不具全局速度的特殊问题的求解问题,也提高了在处理复杂界面的能力和计算效率。
补充资料:单侧曲面与双侧曲面


单侧曲面与双侧曲面
one - sided and two - sided surfaces

单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条