说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 转化曲面
1)  changing of the camber surface
转化曲面
2)  Surface of revolution
回转曲面
1.
By study the method of approximate development of surface of revolution,the mathematiccal model of approximate development,precision analysis and error correction has been gained.
通过对不可展回转曲面近似展开方法的研究,得到了回转曲面近似展开、精度分析和误差矫正的数学模型。
3)  revolution surface
旋转曲面
1.
We present application of this technique to generation of revolution surface.
流曲线曲面造型是一种自由曲线曲面造型技术,尝试用这种方法生成旋转曲面。
2.
This article discusses the NURBS representation of revolution surface and sphere.
本文研究了旋转曲面和球面的NURBS表示问题,给出了用NURBS曲面表示旋转曲面时,计算其控制顶点和权因子的一般公式。
4)  rotation surface
旋转曲面
1.
A new method for quickly constructing rotation surfaces;
快速生成旋转曲面的一种新方法
2.
Design of rotation surface with given Gauss curvature function;
给定Gauss曲率函数的旋转曲面的设计
3.
Design of rotation surface with given principal curvature function
给定主曲率函数的旋转曲面设计
5)  surfaces of revolution
旋转曲面
1.
Surfaces of Revolution in E_2~4 Space;
E_2~4空间的一类旋转曲面
2.
The subdivision rules based on the geometric interpretation of the tensor product scheme, and it can reproduce the surfaces of revolution.
其细分规则基于张量积曲面细分模式的几何意义,不仅可以生成旋转曲面等特殊曲面,而且可以根据参数来控制细分曲面的形状。
3.
This dissertation is devoted to studying of Marcinkiewicz integraloperators with rough kernels associated to surfaces of revolution.
本文主要研究沿旋转曲面的粗糙核奇异积分算子在Lebesgue空间的有界性。
6)  rotational surface
旋转曲面
1.
As to the space curve coils the arbitray right line and circles to obtain the rotational surface ∑, the body of rotational through ∑ s surround into(the part sealing off does not put the back plane disc), the integration formula about area of rotational surface and volume of the body of rotation are given by using coordinate transformation and Infinitesimal method.
利用坐标变换与微元法得到了空间曲线绕任一直线旋转所得旋转曲面∑的面积公式 ,以及由∑所围 (未封闭处加底圆盘 )旋转体的体积公
2.
By making use of transformation of coordinate translation, coordinate rotation, we deduced general formula about area of rotational surface.
利用坐标平移、旋转变换 ,导出旋转曲面面积求法的一般公式 。
补充资料:单侧曲面与双侧曲面


单侧曲面与双侧曲面
one - sided and two - sided surfaces

单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条