说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Markov随机场
1)  Markov random field
Markov随机场
1.
A new unsupervised algorithm for image segmentation based on an inhomogeneous Markov random field model;
基于非齐次Markov随机场的无监督图像分割新算法
2.
Recognition of multiple 3-D objects based on Markov random field models;
基于Markov随机场的三维物体识别算法
3.
Region tracking algorithm based on hidden Markov random field;
基于Markov随机场的区域跟踪算法
2)  Markov random fields
Markov随机场
3)  Huber-Markov random field
Huber-Markov随机场
1.
In the MAP super-resolution image reconstruction algorithm, the image discontinuities and details can be preserved better if Huber-Markov Random Fields (HMRF) is used as prior models compared with Gaussian prior models.
在MAP超分辨率图像重建算法中,用Huber-Markov随机场(HMRF)作为图像的先验模型相比于Gaussian-Markov随机场(GMRF)能够更好地保护图像的边缘和细节。
4)  pair-wise Markov model
双Markov随机场
5)  gaussian markov random fields
高斯Markov随机场
6)  Markov random field model
Markov随机场模型
1.
This method is based on Markov random field model and extracts the texture features from the model parameters.
文中提出了一种基于图像纹理分析的表面缺陷检测方法,图像表面纹理特征是利用Markov随机场模型来描述的,通过学习和聚类分析来检测出纹理图像中有缺陷的区域。
补充资料:广义随机场


广义随机场
random field, generalized

【补注】亦见随机场(m记om field).广义随机场[皿日田】云dd,90.司加闭;cjly,‘HOenO二0606川e“Hoel,广义随机过程(罗能阁讼分stochas康Proo巴洛) 光滑流形G上的随机函数(mndom丘Lnction),它的典型的实现是定义在G上的广义函数.更确切地说、设G是一C。流形(光滑流形),再设D(G)是定义在G上的紧支撑的无限次可微函数空间,具有在一致紧支撑上的函数列及其所有导数序列的一致收敛性的通常拓扑.这样,就可以在G上用给定的从D(G)到定义在某个概率空间(Q,黔,川上的随机变量空间L。(Q,忍,拜)的连续线性映射 D(G))L‘,(Q,忍,拼),职~九,中6D(G)来定义广义随机场,这里Q是非空集合,黔是O的子集。代数,“是定义在毋上的概率测度,而随机变量空间L。(Q,黔,拜)具有依测度收敛(conVergenCeinn笼尧巧ure)拓扑(〔7]).当概率空间是G上广义函数空间D‘(G),具有由D‘(G)中柱集生成的。代数黔。(见广义函数空间(罗配耐刘丘m由。留,印aceof),柱集(q越n由rset))且映射由 j,(T)二(T,甲),T‘D‘(G),甲〔D(G),给定的情形,广义随机场{凡:职〔D(G)}称为典型的(以加灿以1).任何一个在有限维流形G上的广义随机场概率同构于某一(唯一的)G上的典型随机场(见[2」). 这个定义容许很多自然的修正.例如,可以考虑向量值广义随机场或者在定义中用G上的检验函数的更广的空间(例如,在G=R”,n=l,2,…,的情形,S(R”)一C田可微函数连同其导数都比任意负幂{xl人,k=一1,一2,…,x〔R”下降迅速,这样的函数所成的空间)来代替空间D(G). 广义随机场的概念包括其实现是通常函数的古典随机场及过程.这一概念出现于见年代中期,当时许多自然的随机结构显而易见地不能够用古典随机场给予充分简单的表述,而可以用广义随机场的语言给出简单、优雅的描述.例如,D(Rn),n=l,2,二,上的任意正定双线性形(,、,,:)一丁丁、(x,,xZ),1(x,),2(、2)dxldxZ, R,Rn职,,毋2‘刀(R”),其中评(x,,xZ)是两个变量的正定对称广义函数,决定一个唯一的R”上具零均值的C透理粥广义随机场{几:中任D(R”)},这个场的协方差是 J几.几2“。一‘,】,毋2’,其中#是D‘(R”)上与这个场对应的概率测度.仅当函数评(xl,xZ)充分好(例如连续有界)时,这个广义随机场才能转化成古典的.另一个例子是R”上的广义随机场(见〔6』),其中没有古典场. 由于70年代早期发现了构造物理量子场的问题和R”(n>l)上MaPxoB广义随机场之间的联系,研究广义随机场(和特别是Ma琳oB场)的兴趣近年来一直在增长(见【5】).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条