1) integration depending on a parameter
参变量积分
1.
Using the integral as a function of the upper limit and integration depending on a parameter, an analytical upper bound solution to drawing stress through idling rolls has been obtained in this paper.
本文建立与Avitzur不同的直角坐标系速度场与应变速率场,并采用变上限积分与参变量积分获得辊拔力的上界解析解。
2) Integral which have two variable parameters
双参变量积分
3) integral depending on a parameter
含参变量积分
1.
In this paper, we give a new appricatins of the D derivate in the integral depending on a parameter, and an example.
本文给出D导数在含参变量积分中的一个应用和一个具体例子。
4) parametric variable integral transformation
含参变量积分变换
5) parametric integration
参量积分
1.
Then, based on the upper-bound theorem,a general solution to unit indentation pressure isobtained through parametric integration and improper integral.
由上界定理经参量积分、广义积分求得冲头单位压力通解后,以待定参数法求得通解最小上界值。
6) improper integral with variable
含参变量的广义积分
1.
In this paper,solution to improper integral has been got by using Laplace transform and inverse Laplace transform to improper integral with variable.
将含参变量的广义积分取拉普拉斯变换,再通过拉普拉斯逆变换来求解广义积分。
补充资料:含参变量积分
见积分学。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条