1) Marple Spectrum Method
Marple谱方法
2) Marple algorithm
Marple算法
1.
The comparison of Burg algorithm and Marple algorithm in maximum entropy spectrum analysis;
最大熵谱分析中Burg算法和Marple算法比较
2.
In this paper,we use the parameters of AR model in Marple algorithm to estimates power spectral of the omni-directional M-mode echocardiography to extract the more precise information from the echocardiography,according to the features of the echocardiography characteristics.
结合全方向M型心动图的特点,确定使用Marple算法估计AR模型的参数对全方向M型心动图进行功率谱估计,实现了从全方向M型心动图中提取更为深入和准确的信息,同时也为心脏病的临床诊断提供一种新的方法。
3.
Through the analysis of power spectrum estimation based on AR model,L-D algorithm,Burg algorithm and Marple algorithm are presented.
通过分析AR模型功率谱估计,介绍AR模型参数提取的L-D算法、Burg算法和Marple算法,并利用计算机仿真比较三者的性能。
3) Moving Marple's algorithm
移动Marple算法
4) spectral method
谱方法
1.
Fundamental problems in spectral methods and finite spectral method;
谱方法的基本问题与有限谱法
2.
Mixed spectral method for 2-D exterior problem;
二维外部问题的混合谱方法(英文)
3.
Wavelet-spectral methods for solving a class of Helmholtz equations with periodic coefficients;
解一类具有周期系数的Helmholtz方程的小波谱方法
5) spectrummethod
频谱方法
6) piezospec troscopi c method
压谱方法
补充资料:谱方法
解偏微分方程的一种数值方法。其要点是把解近似地展开成学滑函数(一般是正交多项式)的有限级数展开式,即所谓解的近似谱展开式,再根据此展开式和原方程,求出展开式系数的方程组。对于非定常问题,方程组还同时间t有关。谱方法实质上是标准的分离变量技术的一种推广。一般多取切比雪夫多项式和勒让德多项式作为近似展开式的基函数。对于周期性边界条件,用傅里叶级数和面调和级数比较方便。谱方法的精度,直接取决于级数展开式的项数。现以解简单一维热传导方程的初边值混合问题为例,说明这种方法的应用:
(1)
边界条件
u(0,t)=u(π,t)=0,
(2)
初始条件
u(x,0)=g(x),
(3)式中x为坐标;t为时间;a为大于零的常数。根据周期性边界条件,可取近似谱展开式为:
(4)把式(4)代入式(1)得:
(5)
。
(6)
利用快速傅里叶变换技术,可迅速完成求解过程,而且(4)至(6)式比任何有限阶的有限差分解,都更快地收敛到(1)至(3)的真解。一般说,谱方法远比普通一、二阶差分法准确。由于快速傅里叶变换之类的技术不断发展,谱方法的运算量越来越少,一般是很合算的。特别是对于二维以上的问题,用差分法计算必须设置足够多的网格点,造成计算量的增加,而用谱方法一般不需取太多的项就可得到较高精度的解。因此谱方法在计算流体力学复杂流场的问题中有广泛应用。
(1)
边界条件
u(0,t)=u(π,t)=0,
(2)
初始条件
u(x,0)=g(x),
(3)式中x为坐标;t为时间;a为大于零的常数。根据周期性边界条件,可取近似谱展开式为:
(4)把式(4)代入式(1)得:
(5)
。
(6)
利用快速傅里叶变换技术,可迅速完成求解过程,而且(4)至(6)式比任何有限阶的有限差分解,都更快地收敛到(1)至(3)的真解。一般说,谱方法远比普通一、二阶差分法准确。由于快速傅里叶变换之类的技术不断发展,谱方法的运算量越来越少,一般是很合算的。特别是对于二维以上的问题,用差分法计算必须设置足够多的网格点,造成计算量的增加,而用谱方法一般不需取太多的项就可得到较高精度的解。因此谱方法在计算流体力学复杂流场的问题中有广泛应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条