1) metal physics mechanism
金属物理学机理
2) physical metallurgy
金属物理学
3) physical chemistry of metal
金属物理化学
4) physics of transition metal
过渡金属物理学
5) rare earth metal physics
稀土金属物理学
补充资料:金属物理学
研究金属和合金的结构与性能关系的科学,即从电子、原子和各种晶体缺陷的运动和相互作用来阐明金属和合金的各种宏观规律与转变过程。它既相当于金属学在微观领域内的进一步深入,也是以金属和合金为对象的固体物理学的一个分支。
历史 人类在生产实践中应用金属与合金材料已经有几千年的历史。但以金属与合金为对象进行认真的科学研究起步于19世纪:初步研究了其力学、电学和磁学等性质,并以金相显微镜观察了金属的显微组织,取得了对合金的凝固、固态相变及再结晶等现象的初步认识,从而建立了和生产实验密切相关的金属学这门学科。20世纪的初叶,X射线衍射方法的应用为金属研究开辟了新天地,使我们的认识深入到原子的水平;50年代以后,电子显微镜的使用将显微组织和晶体结构之间的空白区域填补起来了,成为研究晶体缺陷和探明金属实际结构的主要手段;而多种能谱技术包括电磁波谱和机械振动谱(内耗与超声衰减),对于澄清电子结构、缺陷性质和探测化学成分起重要作用;中子的非弹性散射又提供有关点阵振动的信息。这些实验方法为金属物理的发展作出重要贡献。另一方面理论物理(特别是量子力学和统计物理)的进展提供了处理金属中电子结构与原子过程的理论方法,对于形成和发展金属物理这一学科也起了关键作用。
金属电子论 金属的电子结构与电子性能的理论,是金属物理基础理论的重要的一环。金属具有良好的导电性能是区别于其他材料的主要标志。20年代中A.索末菲提出了自由电子的量子理论,后来F.布洛赫等用量子力学方法处理了周期势场中的电子,奠定了单电子能带理论的基础(见固体的能带)。N.F.莫脱与H.琼斯的《金属与合金性质的理论》(1936)就是金属电子论的早期的总结,主要讨论简单金属的单电子理论,并用以解释金属的许多性能。随后金属电子论在多方面迅速发展:费密面的探测技术使金属的电子结构能够实验测定;提出了多种计算能带结构的方法,并能够较现实地计算金属的能带结构;发展了过渡金属与稀土金属的电子结构的理论,这对于理解结合能和磁性都是至为重要的;在多电子理论的基础上建立了超导微观理论,解决了长期悬而未决的疑难问题;第二类超导体的特性的阐明和约瑟夫森效应的发现,为超导体的技术应用开拓了新的领域。
晶体缺陷理论 晶体缺陷的基本规律及结构敏感性能的理论解释,是金属物理基础理论的另一支柱。金属的许多重要技术性能是结构敏感的,即受到晶体缺陷的制约。实用金属材料的范性与强度就是一个例子。从20年代起,人们对于金属单晶的范性形变开展了系统的研究,到30年代中,G.I.泰勒与J.M.伯格斯等奠定了晶体位错理论的基础。50年代中位错得到有力的实验观测证实,随即开展了大量的研究工作,澄清了金属范性形变的微观机制和强化效应的物理本质。点缺陷的基础研究澄清了扩散与辐照损伤的机制。晶粒间界(即晶界)结构对金属的性能特别是力学性能,有甚大的影响。小角度的晶界可以归结为位错的行列与网络,已经基本搞清楚。目前重点在于澄清大角度晶界的结构。金属某些电磁性能也具有结构敏感性。缺陷的钉扎效应(见位错)对于硬超导体(见第二类超导体)的临界电流和硬铁磁体(见铁磁性)的磁化曲线都有显著的影响。
合金理论 也是金属物理的重要领域之一,是开发新合金材料所需要的理论基础。在20世纪初在J.W.吉布斯的复相平衡理论的基础上建立了合金的热力学。随后对于合金相图、合金结构及其经验规律等方面进行了广泛的研究,积累了大量的资料。从30年代以后,合金电子理论和统计理论都有所发展,对于许多问题可以提出定性或半定量的理论解释。
相变 金属物理的另一个重要领域就是金属与合金的相变(见固体中的相变),它和金属热处理及铸造工艺有密切关系。20年代建立了相变的成核生长的形式理论。到20世纪中叶马氏体相变与固溶体的脱溶分解被人们关注,澄清了晶体学关系,求出了动力学规律,探讨了晶体缺陷在这些相变中的作用。在这方面的工作全面总结在J.W.克里斯琴的专著《金属与合金的相变理论》(1965)之中。近年来值得注意的发展动向为:脱溶的拐点分解规律的阐明,这是不经成核的相变过程;将软模理论应用于马氏体相变,有可能揭示其原子过程;将形态稳定性理论应用于合金的凝固和相变,有可能阐明实际合金中所出现的复杂的显微组织(见晶体生长理论)。
另外还有两个新兴的研究领域,值得注意:一是关于液态和非晶态金属的研究,它是无序体系物理学的一个组成部分,促进了金属玻璃材料的开发工作(见非晶态材料);另一是金属表面的研究,它是表面物理的一个组成部分,也和吸附、氧化、催化、腐蚀及磨损等实际问题密切相关。
参考书目
冯端、王业宁、丘第荣编著:《金属物理》,上册、下册,科学出版社,北京,1964、1975。
J.M.Ziman and P.B.Hirsch,ed.,The Physics of Metals,Vol.1,2,Cambridge Univ.Press,Cambridge, 1971,1975.
R.W.Cahn, ed., Physical Metallurgy, 2nd ed.,North-Holland,Amsterdam,1970.
历史 人类在生产实践中应用金属与合金材料已经有几千年的历史。但以金属与合金为对象进行认真的科学研究起步于19世纪:初步研究了其力学、电学和磁学等性质,并以金相显微镜观察了金属的显微组织,取得了对合金的凝固、固态相变及再结晶等现象的初步认识,从而建立了和生产实验密切相关的金属学这门学科。20世纪的初叶,X射线衍射方法的应用为金属研究开辟了新天地,使我们的认识深入到原子的水平;50年代以后,电子显微镜的使用将显微组织和晶体结构之间的空白区域填补起来了,成为研究晶体缺陷和探明金属实际结构的主要手段;而多种能谱技术包括电磁波谱和机械振动谱(内耗与超声衰减),对于澄清电子结构、缺陷性质和探测化学成分起重要作用;中子的非弹性散射又提供有关点阵振动的信息。这些实验方法为金属物理的发展作出重要贡献。另一方面理论物理(特别是量子力学和统计物理)的进展提供了处理金属中电子结构与原子过程的理论方法,对于形成和发展金属物理这一学科也起了关键作用。
金属电子论 金属的电子结构与电子性能的理论,是金属物理基础理论的重要的一环。金属具有良好的导电性能是区别于其他材料的主要标志。20年代中A.索末菲提出了自由电子的量子理论,后来F.布洛赫等用量子力学方法处理了周期势场中的电子,奠定了单电子能带理论的基础(见固体的能带)。N.F.莫脱与H.琼斯的《金属与合金性质的理论》(1936)就是金属电子论的早期的总结,主要讨论简单金属的单电子理论,并用以解释金属的许多性能。随后金属电子论在多方面迅速发展:费密面的探测技术使金属的电子结构能够实验测定;提出了多种计算能带结构的方法,并能够较现实地计算金属的能带结构;发展了过渡金属与稀土金属的电子结构的理论,这对于理解结合能和磁性都是至为重要的;在多电子理论的基础上建立了超导微观理论,解决了长期悬而未决的疑难问题;第二类超导体的特性的阐明和约瑟夫森效应的发现,为超导体的技术应用开拓了新的领域。
晶体缺陷理论 晶体缺陷的基本规律及结构敏感性能的理论解释,是金属物理基础理论的另一支柱。金属的许多重要技术性能是结构敏感的,即受到晶体缺陷的制约。实用金属材料的范性与强度就是一个例子。从20年代起,人们对于金属单晶的范性形变开展了系统的研究,到30年代中,G.I.泰勒与J.M.伯格斯等奠定了晶体位错理论的基础。50年代中位错得到有力的实验观测证实,随即开展了大量的研究工作,澄清了金属范性形变的微观机制和强化效应的物理本质。点缺陷的基础研究澄清了扩散与辐照损伤的机制。晶粒间界(即晶界)结构对金属的性能特别是力学性能,有甚大的影响。小角度的晶界可以归结为位错的行列与网络,已经基本搞清楚。目前重点在于澄清大角度晶界的结构。金属某些电磁性能也具有结构敏感性。缺陷的钉扎效应(见位错)对于硬超导体(见第二类超导体)的临界电流和硬铁磁体(见铁磁性)的磁化曲线都有显著的影响。
合金理论 也是金属物理的重要领域之一,是开发新合金材料所需要的理论基础。在20世纪初在J.W.吉布斯的复相平衡理论的基础上建立了合金的热力学。随后对于合金相图、合金结构及其经验规律等方面进行了广泛的研究,积累了大量的资料。从30年代以后,合金电子理论和统计理论都有所发展,对于许多问题可以提出定性或半定量的理论解释。
相变 金属物理的另一个重要领域就是金属与合金的相变(见固体中的相变),它和金属热处理及铸造工艺有密切关系。20年代建立了相变的成核生长的形式理论。到20世纪中叶马氏体相变与固溶体的脱溶分解被人们关注,澄清了晶体学关系,求出了动力学规律,探讨了晶体缺陷在这些相变中的作用。在这方面的工作全面总结在J.W.克里斯琴的专著《金属与合金的相变理论》(1965)之中。近年来值得注意的发展动向为:脱溶的拐点分解规律的阐明,这是不经成核的相变过程;将软模理论应用于马氏体相变,有可能揭示其原子过程;将形态稳定性理论应用于合金的凝固和相变,有可能阐明实际合金中所出现的复杂的显微组织(见晶体生长理论)。
另外还有两个新兴的研究领域,值得注意:一是关于液态和非晶态金属的研究,它是无序体系物理学的一个组成部分,促进了金属玻璃材料的开发工作(见非晶态材料);另一是金属表面的研究,它是表面物理的一个组成部分,也和吸附、氧化、催化、腐蚀及磨损等实际问题密切相关。
参考书目
冯端、王业宁、丘第荣编著:《金属物理》,上册、下册,科学出版社,北京,1964、1975。
J.M.Ziman and P.B.Hirsch,ed.,The Physics of Metals,Vol.1,2,Cambridge Univ.Press,Cambridge, 1971,1975.
R.W.Cahn, ed., Physical Metallurgy, 2nd ed.,North-Holland,Amsterdam,1970.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条