1) solitonlike
类孤子
1.
The relationship between solitonlike and the incident intensity, Kerr coefficient or linear photonic quantum well was calculated.
研究了含Kerr非线性的一维光子晶体中的类孤子。
2) soliton-like solution
类孤子解
1.
Several exact soliton-like solutions for the variable coefficient KdV equation are obtained through use of the corresponding reduced NLODE.
利用一种函数变换将变系数KdV方程约化为非线性常微分方程(NLODE),并由此NLODE出发获得变系数KdV方程的若干精确类孤子解。
2.
By use of solutions of the auxiliary equation,and through making a function transformation,the new soliton-like solutions and the triangle function wave solutions to some equations are constructed with the help of symbolic computation system Mathematica.
给出一种辅助方程的解,并通过一种函数变换,借助符号计算系统Mathematica构造了两类变系数KdV方程、广义变系数KdV方程和带有强迫项的KdV方程的新的类孤子解和三角函数波解。
3.
Then the solutions of the equations istructureed by more wide assuming, and lastly we get new soliton-like solutions to the Broer-Kaup equations.
本文通过适当变换,将Broer-Kaup方程组变为一个简单的方程,然后利用比较广泛的假设,用Riccati方程的解来构造该方程的解,得到了Broer-Kaup方程组的新类孤子解。
3) soliton-like
类明孤子
1.
The influence of the small dielectric loss and third-order dispersion on the soliton-like pulses in the optical fiber;
光纤中小损耗和三阶色散对类明孤子传输特性的影响
2.
The Influence of optical fiber nonlinear dispersion on soliton-like propagation properties;
光纤非线性色散对类明孤子传输特性的影响
4) bright-soliton-like
类明孤子
1.
The influence of perturbation on the propagation properties of optical bright-soliton-like pulses is investigated in optical fibers by means of variational method, and the evolution equations for the parameters of the optical bright-soliton-like pulse is derived.
应用变分法 ,研究了微扰对类明孤子在光纤中非线性传输特性的影响 ,导出了类明孤子脉冲参量演化的动力学方程。
5) optical soliton-like pulse
类明孤子
1.
In this paper, we used the variational principle for the optical soliton-like pulses in the optical fiber and introduced the small perturbation of the third-order dispersion to the NLS equation to investigate the evolution of the parameters of the optical soliton-like pulses, and we got the conclusion and the evolution equations for the parameters of the soliton-like pulses in the optical fiber.
本文采用变分法,探讨了三阶色散存在时类明孤子在光纤中的传输特性,导出了类明孤子参数随传输距离的演化方程组,讨论了三阶色散对类明孤子传输特性的影响。
6) soliton-like solutions
类孤子解
1.
New soliton-like solutions to the (2+1)-dimensional dispersive long wave equations;
(2+1)维色散长波方程的新的类孤子解
2.
Based on that,several exact soliton-like solutions for the variable coefficient nonlinear Schrdinger equation for optical fiber are obtained.
通过求解非线性常微分方程,获得了光纤中变系数非线性Schrdinger方程的精确类孤子解。
3.
With the aid of the symbolic computation softwares Maple, we solve the (2+1)-dimensional Boussinesq equation by doing proper unknown functions ansatz of the seed solutions of the equation and performing mathematical calculations to obtain a series of exact solutions,which contain soliton-like solutions and rational solutions.
这些解包括类孤子解和有理解 ,其中有的解中含有任意函数 ,当任意函数取特殊函数时 ,这些解具有丰富的结构 ,有些结构可能对物理现象的研究是有意义的 。
补充资料:孤子
分子式:
CAS号:
性质:孤子的概念来源于“孤波”,这是一种在水面上传播的孤立的波峰。此波峰在传播过程中保持形状不变,不像一般水波那样发生弥散。孤子具有定域性(波形集中在一定的范围以内)、稳定性(传播过程中波形和速度不变)和完整性(碰撞后波形仍恢复到原来的形状)。除具有波峰形式的孤子外,还存在一种其波形象一个台阶形式的孤子,常称为畴壁(domainwall)。在许多物理过程中都会出现这种畴壁形的孤子,如晶格缺陷的移动,铁磁体中磁畴壁的运动等。导电聚乙炔中电荷载流子也是一种畴壁形孤子。
CAS号:
性质:孤子的概念来源于“孤波”,这是一种在水面上传播的孤立的波峰。此波峰在传播过程中保持形状不变,不像一般水波那样发生弥散。孤子具有定域性(波形集中在一定的范围以内)、稳定性(传播过程中波形和速度不变)和完整性(碰撞后波形仍恢复到原来的形状)。除具有波峰形式的孤子外,还存在一种其波形象一个台阶形式的孤子,常称为畴壁(domainwall)。在许多物理过程中都会出现这种畴壁形的孤子,如晶格缺陷的移动,铁磁体中磁畴壁的运动等。导电聚乙炔中电荷载流子也是一种畴壁形孤子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条