1) complex vector
复矢量
1.
The mechanical model of the dynamic analysis of quick-return mechanism in the planer is established by complex vector method.
运用复矢量法建立了刨床急回机构动态静力分析的力学模型 。
2.
Velocity formula and acceleration formula of point in the plane graph is proved by means of complex vector,and a simple method to obtain the velocity and acceleration is proposed.
研究刚体的平面平行运动 ,用复矢量方法推导了平面图形内各点的速度、加速度关系式 ,给出了求解平面图形内各点速度、加速度的简捷方法。
3) Complex vector
复数矢量
1.
It is put forward that virtual displacement is expressed with complex vector in equation of virtual work, a new method is proposed to solve the equilibrium of complicated mechanism, and new mode of thinking is provided for studying equilibrium of system of rigid bodies.
在虚功方程中 ,提出用复数矢量来表示虚位移 ,给出了求解复杂机构平衡问题的新方法 ,从而为研究多刚体系统的平衡问题提供了新的分析思路。
2.
It is rather simple and quick to analyze problems in machineworck with complex vectors.
用复数矢量对机械加工中的一些问题进行分析计算较为简便快捷。
4) complex vector equation
复极矢量
1.
A kind of effective design method based on complex vector equation was put forward for conjugate parallel index cams mechanism.
由于在共轭盘形分度凸轮机构中参与啮合的零件多,设计较复杂,文章提出了一种基于复极矢量函数的简便设计方法,建立了数学模型,给出了设计实例并分析了不同参数对凸轮廓线的影响,为相关机械的设计和研究提供了参考。
5) polar complex vector method
复极矢量法
1.
This thesis introduces the essential principle of polar complex vector method, and introduces its application in the mechanism motion analysis through two examples——crank-slider mechanism and planar cam mechanism.
介绍了复极矢量法的基本原理,并通过对曲柄滑块机构和直动滚子从动件平面回转凸轮机构的运动分析,介绍了复极矢量法在机构运动分析中的应用。
2.
The essential principle of polar complex vector method was presented.
介绍了复极矢量法的基本原理 ,通过实例讨论了该方法在机构运动分析中的应用。
6) complex number vector method
复数矢量法
1.
Here the complex number vector method is used to analyze the direct and inverse kinematics of a kind of five-bar Cobot.
该文利用复数矢量法对一种五杆式人机合作机器人的运动学正、逆过程进行了分析,推导出其运动方程。
2.
From the fundamental composed loop, this paper sets up the closed vector eguation, using the complex number vector method, derives the speed relations between the components respectivly, and gives the computation instruction with the examples of the dual plantary gear trains.
从周转轮系的基本组成回路出发建立封闭矢量方程,用复数矢量法导出各构件之间的速度关系式,并以双重周转轮系为例进行了计算说
补充资料:几复寄槟榔且答诗劝予同种复次韵寄之
【诗文】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条