2) repetitive use of space vector
复用空间矢量
3) space vector
空间矢量
1.
Simulation study of space vector pulse width modulation based on PSCAD/EMTDC;
基于PSCAD/EMTDC的空间矢量PWM仿真研究
2.
A method for detecting stator winding faults in induction motors based on space vector;
基于空间矢量法的感应电机定子线圈故障检测方法研究
3.
Design of matrix variable frequency power source with DSP-based space vector modulation;
基于DSP空间矢量控制的矩阵变频电源设计
4) vector space
矢量空间
1.
A publicly verifiable vector space secret sharing scheme;
一种可验证的矢量空间动态密钥共享方案
2.
Research on the group clustering method based on vector space;
基于矢量空间的群体聚类方法研究
3.
Secure distributed signcryption scheme based on vector space
基于矢量空间的安全分布式签密方案
5) space-vector
空间矢量
1.
The Conception of Time-phasor and Space-vector and its Application;
时间相量、空间矢量的概念及应用
2.
A novel simplified space-vector pulse width modulation(SVPWM) method is implied to simplify the space-vector diagram of a three-level inverter into that of a two-level inverter,all the procedures for the three-level SVPWM are done like conventional two-level inverter.
采用新型电压空间矢量脉宽调制算法对三电平逆变器的电压空间矢量平面进行简化,将其电压空间矢量平面简化至两电平空间矢量平面,使用两电平逆变器脉宽调制方法对三电平逆变器进行调制,简化了中点电位平衡控制策略。
3.
According to the concept of space-vector,the method to deal with system coupling variables is analyzed in detail.
采用空间矢量的概念,对系统耦合量的处理方式进行了详细分析。
补充资料:复叠空间
代数拓扑中的一个重要概念,又称覆盖空间。设p:塣→X是连续映射,如果在X中,每一点x都有开邻域U,使得p-1(U)是塣中一组互不相交开集{Uα}的并集,且p 限制在每个Uα上都是从Uα到U 的同胚,则称p 是复叠映射,塣是X 的一个复叠空间。
例如,由规定的直线到圆周的映射 p:E1→s1是复叠映射。设,取正数,作z0的开邻域,则p_1(U)是一组不相交开区间{(n+t0-ε,n+t0+ε)}的并集,且p:(n+t0-ε,n+t0+ε)→U是同胚。又如,当将n维球面Sn的每对对径点粘合时,商空间是实射影空间Pn,粘合映射p:Sn→Pn也是复叠映射。
复叠映射的提升性质 复叠映射是一个纤维映射,即它对任何空间都有同伦提升性质(见同伦论)。此外,它还有更多的提升性质:
映射提升定理 设Y连通、局部道路连通,y0∈Y,又设??:Y→X 是连续映射,x0=??(y0),取定慜0∈p_1(x0),则?? 有提升 愝: Y→塣 使 愝(y0)= 慜0 的充分必要条件是??。
映射提升惟一性定理 设Y连通,??:Y→X是连续映射,??的两个提升愝,愝┡:Y→塣如果对某点y∈Y有愝(y)= 愝┡(y),那么愝=愝┡。
用这两个定理不难推出,当n>1时,复叠映射 p所诱导的同态p:πn(塣)→πn(X)是同构,而p:π1(塣)→π1(X)是单同态。
泛复叠空间 当P(π1(塣))是π1(X)的正规子群时,称塣是X的正则复叠空间;如果塣是单连通的,则称塣是X的泛复叠空间,它是最常用的复叠空间。
当一个拓扑空间X连通,局部道路连通与半局部单连通时,它一定存在泛复叠空间。
复叠变换群 是复叠空间塣 的自同胚群的一个子群,它由全体满足p。φ =p的自同胚φ(称为复叠变换)组成。
如果塣是泛复叠空间,并且X道路连通,则塣上的复叠变换群同构于π1(X),利用这个事实可计算某些空间的基?救骸@?E1是S1的泛复叠空间,E1上的复叠变换就是移动距离是整数的平移,从而复叠变换群≌Z,这样就得到。又如n≥2时,Sn是Pn的泛复叠空间,复叠变换只有两个:恒同映射与对径映射,于是。
除了可用来计算基本群外,复叠空间在不动点理论的研究中是一种有效工具,并且在代数拓扑各个领域和几何拓扑中还有广泛的应用。
参考书目
M.A.阿姆斯特朗著,孙以丰译:《基础拓扑学》,北京大学出版社,北京,1983。(M.A.Armstrong,basic TopoЛogy,McGraw-Hill,London,1979.)
例如,由规定的直线到圆周的映射 p:E1→s1是复叠映射。设,取正数,作z0的开邻域,则p_1(U)是一组不相交开区间{(n+t0-ε,n+t0+ε)}的并集,且p:(n+t0-ε,n+t0+ε)→U是同胚。又如,当将n维球面Sn的每对对径点粘合时,商空间是实射影空间Pn,粘合映射p:Sn→Pn也是复叠映射。
复叠映射的提升性质 复叠映射是一个纤维映射,即它对任何空间都有同伦提升性质(见同伦论)。此外,它还有更多的提升性质:
映射提升定理 设Y连通、局部道路连通,y0∈Y,又设??:Y→X 是连续映射,x0=??(y0),取定慜0∈p_1(x0),则?? 有提升 愝: Y→塣 使 愝(y0)= 慜0 的充分必要条件是??。
映射提升惟一性定理 设Y连通,??:Y→X是连续映射,??的两个提升愝,愝┡:Y→塣如果对某点y∈Y有愝(y)= 愝┡(y),那么愝=愝┡。
用这两个定理不难推出,当n>1时,复叠映射 p所诱导的同态p:πn(塣)→πn(X)是同构,而p:π1(塣)→π1(X)是单同态。
泛复叠空间 当P(π1(塣))是π1(X)的正规子群时,称塣是X的正则复叠空间;如果塣是单连通的,则称塣是X的泛复叠空间,它是最常用的复叠空间。
当一个拓扑空间X连通,局部道路连通与半局部单连通时,它一定存在泛复叠空间。
复叠变换群 是复叠空间塣 的自同胚群的一个子群,它由全体满足p。φ =p的自同胚φ(称为复叠变换)组成。
如果塣是泛复叠空间,并且X道路连通,则塣上的复叠变换群同构于π1(X),利用这个事实可计算某些空间的基?救骸@?E1是S1的泛复叠空间,E1上的复叠变换就是移动距离是整数的平移,从而复叠变换群≌Z,这样就得到。又如n≥2时,Sn是Pn的泛复叠空间,复叠变换只有两个:恒同映射与对径映射,于是。
除了可用来计算基本群外,复叠空间在不动点理论的研究中是一种有效工具,并且在代数拓扑各个领域和几何拓扑中还有广泛的应用。
参考书目
M.A.阿姆斯特朗著,孙以丰译:《基础拓扑学》,北京大学出版社,北京,1983。(M.A.Armstrong,basic TopoЛogy,McGraw-Hill,London,1979.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条