说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 应变张量
1)  strain tensor
应变张量
1.
A note on the accurate expression of strain tensor;
关于壳体有限变形的准确应变张量表达式的一点注记
2.
The influences of deformation and Poisson ratio on the volume ratio under different strain tensor descriptions are studied.
对不同应变张量描述下的体积比受变形程度及泊松比的影响进行了分析,结果表明:在La-grangian应变张量与Almansi应变张量及Eulerian应变张量描述下,假定泊松比不变,大变形时都会出现体积变化反常的现象;在对数应变张量描述下,当泊松比取值0。
3.
The expressions of the Lagrangian-Green strain tensor and the Eulerian strain tensor and their work-conjugate stress tensors,namely,the second Piola-Kirchhoff stress tensor and Cauchy stress tensor,are derived for the beam under axial uniformly tension,and the constitutive relations of these two pairs of work-conjugate stress and strain measures are also presented.
推导了轴向均匀大变形等截面杆的Lagrangian-Green应变张量和Eulerian应变张量以及分别与它们能量共轭的第二类Piola-Kirchhoff应力张量和Cauchy应力张量的表达式,给出了这2对能量共轭的应力应变张量的本构关系式。
2)  Green strain tensor
Green应变张量
1.
Based on definition of strain energy function,increment formula of stationary potential energy of finite displacement theory were derived in terms of Kirchhoff stress tensor and Green strain tensor.
基于有限位移理论应变能密度函数的定义,利用Kirchhoff应力张量和Green应变张量,推出了非线性分析中增量形式的势能驻值公式,并证明了由势能增量驻值原理得到的增量平衡方程形式与由虚位移原理所得的结果完全一致。
3)  Lagrange strain tensor
Lagrange应变张量
1.
Then the applicability of both Kirchhoff stress tensor and Lagrange strain tensor are studied to describe the stress and strain field of these structures.
文中探讨了正装结构非线性的分析特点,研究了其应变场与应力场的Kirchhoff应力张量与Lagrange应变张量的适用性,提出了正装结构非线性分析中应力场与应变场的累加规律,导出了拖动坐标法的虚功增量方程,以此对杆系结构非线性分析常用的CR法和UL列式进行了精度比较分析。
4)  the stein tensor field
应变张量场
1.
In this paper, We define the lift g of Finsler metrics g in the manifold M to the T(M), also we introduce the stein tensor field S for the general Finsler connection FG, and prove that, the factors of N-decomposition all are p-homogenity.
本文以最一般的方式定义了流形M上Finsler度量g在T(M)上的提升g,又引进对一般的Finsler联络FG而言的应变张量场S,并证明了它的所有N-分解因子全是正齐次的。
5)  deviatoric tensor of strain
应变偏张量
6)  spherical tensor of strain
应变球张量
补充资料:应变张量
      连续介质力学中度量变形的几何量。在直角坐标系中,未变形物体和已变形物体中线元的平方分别为:
  
  
   ,
  其中
  
   和
  
    分别称为柯西应变张量和格林应变张量或右柯西-格林张量。 这两个张量都是对称正定的。另外,
  
  
   
  和
  
   分别称为芬格应变张量或左柯西-格林张量和皮奥拉应变张量。连续介质中两相邻粒子的ds2-dS2可以用来作为变形的度量。可以写作:
  
  
    ,
  式中
  
  
   
  
  
  
  分别称为拉格朗日有限应变张量或格林有限应变张量、欧拉有限应变张量或阿尔曼西有限应变张量。δ和δ为克罗内克符号。若用位移表示,则得有限变形理论中常用的拉格朗日应变张量和欧拉应变张量:
  
  
   和
  
  式中UK和uk分别为物质坐标中的和空间坐标中的位移分量。若位移很小,则得无限小变形理论中的拉格朗日和欧拉应变张量:V
  
  
  
   和
  
   
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条