1) N-doped
N-掺杂
1.
The Fabrication and Characterization of N-doped Aligned Carbon Nanotube Arrays in Large Area;
大面积N-掺杂定向碳纳米管阵列的制备与表征
2) N-doped
N掺杂
1.
N-doped Visible Light Responsive Photocatalysts;
N掺杂可见光化催化剂的研究
2.
Preparation of N-doped TiO_2 photocatalyst and degradation of formaldehyhyde under visible light;
N掺杂TiO_2光催化剂的制备及其可见光降解甲醛
3.
Preparation and characterization of N-doped nano-TiO_2 photocatalyst
N掺杂纳米TiO_2光催化剂的制备与表征
3) nitrogen-doped
N掺杂
1.
In order to expand the optical response of titania into the visible-light region,nitrogen-doped TiO2 in anatase form were prepared by sol-gel method using triethylamine as nitrogen raw material under ultrasonic irradiation.
为拓展二氧化钛对可见光的响应,超声条件下采用溶胶凝胶法以三乙胺为氮源制备出N掺杂的纳米TiO2光催化剂;以甲基橙的光催化降解为探针反应,评价其光催化活性;运用XRD、TEM、XPS和UV-Vis DRS等技术考察了超声及N掺杂对TiO2微晶尺寸、晶体结构、表面组成与光学性能的影响。
4) N-doping
N掺杂
1.
First-principles study the optical properties of anatase TiO_2 by N-doping;
N掺杂锐钛矿TiO_2光学性能的第一性原理研究
2.
First-principles study of the electronic structure of N-doping anatase TiO_2;
N掺杂锐钛矿TiO_2电子结构的第一性原理研究
3.
The results show that the crystal phase transformation for the nano-N-TiO2 samples from anatase to rutile phase is restrained by increasing the N-doping amounts.
以盐酸羟胺为N源,按r(盐酸羟胺:钛酸四丁酯)分别为1:2,1:1,3:2,2:1和3:1掺杂,采用sol-gel法一步制备N掺杂纳米TiO2。
5) n-type doping
n型掺杂
1.
In this paper we mainly study preparation, properties and n-type doping of cubic boron nitride thin films.
本文主要研究立方氮化硼的制备、性质和n型掺杂等内容。
2.
In this paper, the mechanisms of the reaction about N-type doping polysilicon which take PCl_3/H_2 as phosphor source were investigated theoretically for the first time with Gaussian98 program at B3LYP/6-311G** level.
本文分别研究了PCl_3/H_2在气相中和在硅衬底表面上的微观反应机理,以期为半导体N型掺杂技术提供必要的理论依据。
6) Eu/N-doped
Eu/N掺杂
补充资料:半导体材料掺杂
半导体材料掺杂
doping for semiconductor material
bondootl Col}{00 ehonzo半导体材料掺杂(doping for semiconduCtormaterial)对材料掺入特定的杂质以取得预期的物理性能与参数的半导体材料制备方法,在大多数情况下,是使用掺杂后的半导体材料进行器件制备。掺杂的具体目的有:(l)获得预期的导电类型,如p型掺杂或n型(见半导体材料导电机理)掺杂;(2)获得预期的电阻率、载流子浓度(见半导体材料导电机理),如重掺单晶(见简并半导体)、半绝缘砷化稼的制备;(3)获得低的少子寿命(见半导体材料导电机理),如锗中掺金;(4)获得晶体的良好力学性能,如硅中掺氮;(5)提高发光效率,改变发光波长,如磷化稼中掺氮、掺氧(见发光用半导体材料);(6)形成低维材料及超晶格(见半导体超晶格);(7)调整晶格匹配,如硅中掺锡。 对掺杂的要求主要是:精度、均匀性、分布空间。掺杂的方法有熔体掺杂、气相掺杂、中子擅变掺杂、离子注入掺杂、表面涂覆掺杂(见区熔硅单晶)。掺杂是在半导体材料制备过程的某一个或几个工序中进行,大多数是在单晶拉制过程中进行掺杂,薄膜材料则在薄膜制备过程中进行掺杂,而中子擅变掺杂、离子注入掺杂则离开晶体制备而成为独立的工序。 (万群)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条