一、高速切削技术概述
1931年4月德国物理学家Carl.J.Saloman最早提出了高速切削(High Speed Cutting)的理论,并于同年申请了专利。他指出:在常规切削速度范围内,切削温度随着切削速度的提高而升高,但切削速度提高到一定值之后,切削温度不但不会升高反而会降低,且该切削速度VC与工件材料的种类有关。对于每一种工件材料都存在一个速度范围,在该速度范围内,由于切削温度过高,刀具材料无法承受,切削加工不可能进行。要是能越过这个速度范围,高速切削将成为可能,从而大幅度地提高生产效率。由于实验条件的限制,当时高速切削无法付诸实践,但这个思想给后人一个非常重要的启示。
高速加工技术经历了理论探索,应用探索,初步应用和较成熟应用等四个阶段,现已在生产中得到了一定的推广。特别是20世纪80年代以来,航空工业和模具工业的需求大大推动了高速加工的应用。飞机零件中有大量的薄壁零件,如翼肋、长桁、框等,它们有很薄的壁和筋,加工中金属切除率很高,容易产生切削变形,加工比较困难;另外,飞机制造厂方也迫切要求提高零件的加工效率,从而缩短飞机的交付时间。在模具工业和汽车工业中,模具制造是一个关键,缩短模具交货周期,提高模具制造质量,也是人们长期努力的目标。高速切削无疑是解决这些问题的一条重要途径。自20世纪90年代起,高速加工逐步在制造业中推广应用。目前,据统计,在美国和日本,大约有30%的公司已经使用高速加工,在德国,这个比例高于40%。在飞机制造业中,高速切削已经普遍用于零件的加工。
目前高速切削已经有了一定的应用,但要给高速铣削下一个确切的定义还较困难,高速切削的切削速度范围较难给出。高速切削是一个相对概念,它与加工材料、加工方式、刀具、切削参数等有很大的关系。一般认为,高速切削的切削速度是常规切削速度的5~10倍。对常用材料,一些资料给出了大致数据:铝合金1500~5500 m/min;铜合金900 ~5000 m/min;钛合金100~1000 m/min;铸铁750~4500 m/min;钢600~800 m/min。各种材料的高速切削进给速度范围为2~25m/min。
二、高速切削技术的优势
高速切削之所以得到工业界越来越广泛的应用,是因为它相对传统加工具有显著的优越性,具体说来有以下特点: