说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 倒塔断线
1)  tower collapse and conductor broken
倒塔断线
2)  transmission towers falling
输电线路倒塔
3)  cone traverse winder
宝塔锭倒线机
4)  tower falling down
倒塔
1.
It is pointed out that shed bridging of insulator and the pollution in the ice cause the icing flashover frequently,and the thickness of icing is signifcant above the design value,the excess icing load cause the tower falling down and wire broken,and the differential i.
分析认为绝缘子严重覆冰后爬距大幅减小以及冰中存在的污秽导致了线路频繁冰闪,线路实际覆冰厚度显著超过设计值,荷载过大引发了倒塔和断线,不均匀覆冰导致了导线舞动以及变电设备损坏。
2.
The heavy icing damages the weak part of tower and meteorological condition causes the tower falling down.
针对2004年底和2005年初部分地区的500 kV线路冰闪跳闸、导线舞动和倒塔断线事故,分析了冰害事故的特点及原因。
5)  tower collapse
倒塔
1.
Because of its large scale and intensity,as well as long duration,the bad weather severely damaged power grid facilities by causing many tower collapses and line disconnections within short period of time.
2008年年初我国南方部分地区出现了历史罕见的强降温和持续雨雪冰冻天气,由于其范围广、强度大、持续时间长,造成了电网设施大量损毁,在短时间内倒塔、断线事故集中发生。
2.
The damage of the transmission lines in Hunan during the 2008 ice storm is surveyed and the main causes for the tower collapses and line failures are analyzed.
为分析湖南2008年冰灾引起的倒塔原因,现场调查了2008年湖南冰灾期间≥220kV输电线路的受损情况,发现倒塔线路覆冰厚度主要集中在20~60mm,同时微地形和微气象造成覆冰加重和覆冰的不均匀性,档距、塔形等对线路倒塔也存在影响。
6)  collapsed tower
倒塔
1.
Distribution laws of the collapsed towers about tower type, terrain and its features, and design factors are shown according to the statistical figures of 500 kV transmission lines of SGCC.
根据国家电网公司系统500kV线路倒塔的分类统计,分析了倒塌铁塔在塔型、地形地貌、设计条件等方面的主要分布特征。
2.
At the beginning of 2008,an infrequent and serious ice cover disaster in the South resulted in bad ice transmission lines,large-scale collapsed tower and long-playing power breakdown.
2008年初,南方发生罕见的覆冰严重自然灾害,导致输电线路严重覆冰,发生了大面积倒塔长时间停电事故。
补充资料:输电线路塔
      支持高压或超高压架空送电线路的导线和避雷线的构筑物。
  
  类型  根据在线路上的位置、作用及受力情况分类如表:
  
  
  还可根据不同的电压等级、线路回路数、导线及避雷线的布置方式、材料及结构形式来确定塔的名称,例如:220千伏单回路导线水平排列的门型耐张跨越塔。常见的悬垂型塔或耐张型塔如图。220千伏南京长江大跨越钢管塔,档距长达1933米、高193.5米。(见彩图)  塔的尺寸和档距须满足电路要求:导线与地面、建筑物、树木、铁路、公路、河流以及其他架空线路之间,导线与导线、导线与避雷线之间,均应保持必要的最小安全距离。避雷线对导线的保护角及使用双避雷线时两根避雷线之间的水平最小距离应满足有关规定。
  
  荷载  输电线路塔主要承受风荷载、冰荷载、线拉力、 恒荷载、 安装或检修时的人员及工具重以及断线、地震作用等荷载。设计时应考虑这些荷载在不同气象条件下的合理组合,恒荷载包括塔、线、金具、绝缘子的重量及线的角度合力、顺线不平衡张力等。断线荷载在考虑断线根数(一般不考虑同时断导线及避雷线)、断线张力的大小及断线时的气象条件等方面,各国均有不同的规定。
  
  结构计算  塔一般均简化为静态进行分析,对于风、断线、地震等动荷载,通常在静力分析的基础上,分别乘以风振系数、断线冲击系数、地震力反应系数来考虑动力作用。
  
  输电线路塔的内力计算,与塔式结构和桅式结构相同,但须考虑下列两个问题:
  
  ①导线风荷载对塔的作用。由于导线的支点间距较大(一般为200~800米)而横向摆动的周期较长(一般为5秒左右),故应考虑风沿导线的不均匀分布及导线对塔的动力效应。20世纪60年代初,许多国家的电力部门曾用实际的试验线路来测定导线在大风作用下的最大响应,并据此制订了实用计算法,其中有的已纳入本国的规程,但是由于受地形、测量仪器的精度、分析水平等各种因素的限制,这些实用计算方法还不能精确反映出真实情况。70年代中期,开始应用随机振动理论分析阵风作用于导线对塔引起的动力响应,这种建立在实测资料基础上并用统计概念及谱分析估计结构响应的概率峰值的方法,比较符合风的特点。
  
  ②断线力对塔的作用。导线突断时对塔的冲击荷载在极短的时间内达到峰值,并且各个部位的相对值大小不一,是一种复杂的瞬态强迫振动,要作理论计算比较困难。一般是根据现场试验实测数据获得冲击力的峰值,并据此制定出实用的"断线冲击系数",其值为 1.0~1.3,视电压的高低、塔的类型、不同的部位而定。
  
  基础  输电线路塔基础的种类很多,并随塔的类型、地形、地质、施工及运输的条件而异,常见的有:①整体式刚性基础;②整体式柔性基础;③独立式刚性基础;④独立式柔性基础;⑤独立式金属基础;⑥拉线地锚;⑦卡盘及底盘;⑧桩基础。上述①、②类基础主要用于窄塔身用地小的情况,③、④、⑧类基础用于软土地基,⑤类则适用于山区或搬运及取水较困难的地区,⑥类只用于拉线塔,⑦类只用于钢筋混凝土塔。除应考虑地基和基础的强度外,尚需核算基础的上拔与倾覆稳定性。根据长期使用经验,对一般塔基础可以不必验算地基的变形。
  
  施工方法  输电线路塔的数量多,分布面广,自然条件及地形条件复杂多变,不利于使用大型机具运输和安装。中国多用把杆吊装方法。20世纪70年代开始对100米以上的高塔,采用了更为安全的倒装法,利用钢塔的底层作承力架,先上后下,逐段安装就位,整体提升,并用纤绳临时固定。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条