1) bijection function
双射函数
1.
The process of computation for four-fold Cartesian product bijection function f:N4→N is researched in this paper and the heuristic rules of the function are analyzed.
对四重笛卡尔积双射函数f:N4→N计算过程进行了研究,分析了其内在启发式构造规律,导出了f:N4→N的显式计算式。
2) Bidirectional reflection function
双向反射函数
3) one-way bijective function
单向双射函数
4) Bidirectional Reflectance Distribution Function(BRDF)
双向反射分布函数(BRDF)
1.
The microfacet bidirectional reflectance distribution function(BRDF) model with the two-parameter Cauchy probability distribution,which substitutes for the model with general Gaussian distribution,is used.
将含有双参数的柯西分布替代常规高斯分布引入微面元双向反射分布函数(BRDF)模型,同时考虑了目标自身辐射强度的方向依赖性,在此基础上推导了长波红外偏振的数学模型,并在合理范围内对模型做简化与修正使之适用于仿真研究。
5) BRDF
双向反射分布函数
1.
EXPERIMENTAL METHODOLOGY OF MOORSTONE S SURFACE BRDF;
花岗岩表面双向反射分布函数实验研究
2.
Image-based BRDF Acquisition for 3D Objects with Specular Reflection;
基于图像的三维高光物体双向反射分布函数测量
3.
Development of a Temperature Controllable BRDF Measurement System;
可控温双向反射分布函数测量系统的研制
6) bidirectional emission distribution function
双向发射分布函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条