1) iterative development technology
迭代构建方法
2) iterative methods
迭代方法
1.
And we will give the iterative methods for computing the weighted α β generalized inverse and the sufficient and necessary conditions are obtained.
然后又得到了几个计算该加权α β广义逆的迭代方法。
3) iterative method
迭代方法
1.
Without any functional expansions, accurate orientational distribution functions are obtained by using a newly iterative method to solve the equation of equilibrium state.
不用任何函数展开,通过迭代方法求解平衡态方程,得到精确的取向分布函数。
2.
By means of iterative method,the existence and convergence of the solutions are showed in case Ais invertible.
给出了当矩阵A奇异时,正定解X的最大特征值为1;利用迭代方法讨论了A非奇异时,解X的存在性和收敛
3.
In respect to the shortest path problem of the weighed direct graph,the iterative method of minimum algebra is established.
对有向赋权图的最短路问题建立了极小代数下的迭代方法。
4) iteration method
迭代方法
1.
A solution of a sort special matrix equation by iteration method;
用迭代方法解一类特殊的矩阵方程
2.
In this paper we present a new iteration method with high accuracy for solving nonlinear equations, This method has not only 5-order convergence but also avoids the operation of derivatives.
给出了一种新的求解非线性方程的迭代方法,该算法至少是5阶收敛且不用计算导数,具有收敛速度快,计算精度高的特点。
3.
The existence and uniqueness of the solution to the equation x=A(x,…,x) is studied in weaker condition by using the cones theory and iteration method.
利用锥理论与迭代方法,在较弱的条件下证明了非线性算子方程x=A(x,x,…,x)解的存在性与唯一性。
5) iterative technique
迭代方法
1.
Moreover,we get the conclusion that the conjugate space of Lp is Lq and, for application,the maximal and minimal solutions to a class of nonlinear integral equations in Hilbert spaces and relevant monotone iterative technique are studied.
作为应用,研究了Hilbert空间上的一类非线性积分方程最大解和最小解及其单调迭代方法。
6) iterative reconstruction
迭代重建法
1.
Aiming at solving the problem stated before, there is a method called iterative reconstruction and its modified version were researched in this paper.
本文针对采用部分K空间数据进行MR图像重建时产生截断伪影较严重的问题,研究了一种更为有效的重建方法——迭代重建法及其改进方法。
补充资料:迭代
迭代
iterate
迭代【ite口te;.什pa”11。] 重复应用某种数学运算的结果.这样,如果 y=f(x)三f,(x)是x的函数,则函数 fZ(x)=f[f;(x)」,…,f。(x)=f【f。一:(x)』顺次称为f(x)的二次,…,n次迭代(j记m记).例如,令f(x)=x‘,就得到 fZ(x)=(x“)一x·,, f。(x)=(x‘’一’)“=x““.指标”称为迭代的拳攀(Cxponent),而从f(‘)转移到fZ(x),f,(x),…也称为迭代(ite瑙如n).可以对某种函数类定义具有任意实指数甚至复指数的迭代.迭代用于通过迭代方法求解各种方程或方程组.详见序列逼近法(seq谬ntialappro劝na石on,兹心山记of).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条