说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非自治Hamilton系统
1)  non-autonomous Hamiltonian systems
非自治Hamilton系统
2)  non-Hamilton system
非Hamilton系统
1.
Abelian integrals under quadratic perturbation for integrable non-Hamilton system with center,saddle and node;
具有中心、鞍点、结点型的可积非Hamilton系统在二次扰动下的Abel积分
3)  nonautonomous system
非自治系统
1.
In this paper,we have studied the existence of periodic solution for a class of nonautonomous system=φ(y)-F(x)+P(t) =-g(x)Sufficient condition to exist periodic solution for the system is obtained,and the results in are extended.
本文研究一类非自治系统x=φ(y)-F(x)+P(t)y=-g(x){的周期解的存在性,得出此系统存在周期解的充分条件,推广了文[4,5]的结论。
2.
This nonautonomous system has a quadratic fluid damping andparametric excitation, and the vortex excitation force is of very small amplitude.
该非自治系统具有流体平方阻尼力和中心激振。
4)  Non autonomous system
非自治系统
1.
The non autonomous system =f(t,x)+g(t,x)+H(t),x∈R n is discussed by the theory of matrix measure, and by mesns of the estimating of the solution of a linear system.
对n 维非自治系统 x= f(t,x) + g(t,x) + H(t)其中x ∈ Rn,f(t,x),g(t,x ) 是定义在 I(0 ≤ t< + ∞) × Rn 上的n 维连续向量函数,且f(t + ω,x) =f(t,x),g(t + ω,x) = g(t,x), H(t) 是 n × 1 矩阵且 H(t + ω) = H(t),常数 ω> 0,f(t,x) 对x 具有一阶连续的偏导数,g(t,x) 关于 x 满足 Lipschitz 条件。
5)  nonautonomous systems
非自治系统
1.
The topological linearization of nonautonomous systems with unbounded nonlinear term;
非线性项无界非自治系统的拓扑线性化
2.
Palmer generalized Hartman′s linearization theorem to nonautonomous systems.
Palmer〔1〕在f满足有界及李普希兹条件的前提下,将Hartman〔2〕的线性化理论推广到非自治系统。
6)  nonautonomous dynamical system
非自治系统
补充资料:Hamilton系统


Hamilton系统
HamQtoiiian system

  H如血朋系统【H翻山to面明匆创脚附:raM“月曰ouo.a cH-eTeMa」 由含有2九个未知量p=(p』,…,p,)(广义动量)与q=(q,,…,吼)(广义坐标)的常微分方程组一HaJT川幻n事修组(Ha面ltorha”哪teTn“f闪Ua-tlon‘) dP,_刁H刁叮,刁万 止卫止二一—.-二三二=止二乙‘f二l‘2.·…” dt刁q,’刁t刁Pi (l)描述的力学系统,其中H是(p,q,t)的某一函数,称为方程组(l)的H抽面物翻函数(Har回ton function)或Ha而!ton算子(Hax苗lton恤n)Halnjlton方程组亦称平则李程粤(~nhals岁temof闪UationS),并且在自治个削任(当H非t的显函数时)可称为保守系统(con-望n旧tives那记m),这是由于此时函数H(它常有能量含意)是首次积分(亦即能量在运动中保持不变). 在力学中Ha几亩ton方程组描述一个含有完全约束与具有位势(po让”tial)的力的运动(见H田面I翻川方程E以而lton闪Ua石0斑)).理论物理中许多问题也导致Halnjlton方程组或具有类似性质的偏微分方程,可以将后者看成Hamjlto们方程组的无穷维模拟来讨论.量子力学的方程可用Han川ton方程组的形式,其中几(t)与q,(t)不是时间的数值函数,而是满足一定的交换关系的依赖于t的自伴线性算子.H乏助ilt加方程组(依此词的平常“有限维”意义)在研究偏微分方程的某些渐近问题(波动方程的短波渐近式,量子力学中拟经典渐近式)中起重要作用. 各种变分原理与Ha仃川1011方程组有紧密联系.H七haho七原理(例如见!3])直接导致Halnjlton方程组,然而并非经常使用.最重要的原理是H如血阅-伍印orpa解。益原理(Han山to刀一伪tID脚dski Prindnle),即稳定作用原理,它直接产生1典户l攀方程(力学中的)(I刁脚刊笋闪mt沁飞(inn长℃玩I毗));若带有某种非退化的附加条件,则可以利用1确笋目代变换(L他-e址比姗出lblm)(见H助间翻旧函数(枷耐tonfL川c-tlon);H如川加犯方程(H舰回ton叫UationS))从至刁g份卿方程过渡到H助间ton方程组,如果在应用变分原理时只涉及一阶导数.如果变分原理涉及一阶以上导数,过渡到HaTnjlton方程组的M.B.ocrporPa那翎百法则变得更为复杂些(例如,见[41,圣110). 若H不是q‘的显函数,则几二常数为首次积分.在此情形下,坐标q‘称为嶂巧的(cyclic)(在某些情形下,它有角变量的物理或几何意义)或可忽视的(】朗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条