1) local convex point
局部凸点
1.
In this paper,We first give a new definition,the local convex point.
本文给出了相对于凸分析中函数与集合整体性质的局部化,即定义了集合与函数的局部凸点,并且描述了该对象的性质,对已有结论进行了推广。
2) midpoint locally uniformly convex
中点局部一致凸
1.
It is shown that Banach space X is locally uniformly non square if and only if d X(x,1)>0 for all x∈S(X) ; X is strongly strictly convex if and only if whenver for any x∈S(X),y n∈S(X) and α∈R, if ‖x+αy n‖→0 , and ‖x-αy n‖→1, then α=0 ;and X is strongly strictly convex if and only if X is midpoint locally uniformly convex.
证明了Banach空间X是局部一致非方的当且仅当对任意x∈S(X),都有dX(x,1)>0;X是强严格凸的当且仅当对任意x∈S(X),yn∈S(X)和α∈R,若‖x+αyn‖→1和‖x-αyn‖→1,则α=0;并证明了X是强严格凸的充要条件为X是中点局部一致凸
3) local uniform convex point
局部一致凸点
1.
Lastly, it presents a necessary condition for local uniform convex point.
最后给出了局部一致凸点的一个必要条件。
4) compactly locally uniformly rotund points
紧局部一致凸点
5) compactly middle locally uniformly convexity
紧中点局部一致凸
1.
In this paper, a new geometric property is introduced,namely compactly middle locally uniformly convexity.
引入了一个新的几何性质,即紧中点局部一致凸性,给出了其与中点局部一致凸性的关系,并证明Orlicz空间具有紧中点局部一致凸性的等价条件是M∈△2且M∈SC。
6) midpoint locally K-uniform convexity
中点局部K一致凸性
1.
Midpoint locally uniform convexity is generalized to the midpoint locally K-uniform convexity,and the relation between the two cases is discussed.
主要研究的问题为:假定X、Y都具有中点局部一致凸性或中点局部K一致凸性,那么X pY(1
补充资料:局部
一部分;非全体:~麻醉 ㄧ~地区有小阵雨。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条