1) approximate Q-learning
逼近Q学习
1.
By synthesizing the dynamic programming and BP neural network to seek an optimal strategy through the approximate Q-learning algorithm,the purpose of optimizing the path is ultimately achieved.
针对传统动态规划算法在计算大规模路网的优化问题时所表现出来的计算时间长、存储空间大等缺点,引入了一种神经动态规划算法:它将传统的动态规划和BP神经网络结合起来,通过逼近Q学习算法来寻求一种最优策略,最终达到路径优化的目的。
2) Q-learning
Q学习
1.
Power supplier bieding strategies based on Q-learning algorithm;
基于Q学习算法的发电商报价策略模型
2.
Research on application of multi-agent Q-learning algorithm in multiAUV coordination;
多智能体Q学习在多AUV协调中的应用研究
3.
Application of Agent-based Q-learning in the Traffic Flow Control of Single Intersection;
基于Q学习的Agent在单路口交通控制中的应用
3) Q-learning
Q-学习
1.
A Traffic Signal Control Method Based on Q-Learning;
基于Q-学习的交通信号控制方法
2.
Non-linear Control Based on Q-learning Algorithms;
基于Q-学习的非线性控制
3.
Research on regional cooperative multi-agent Q-learning;
局部合作多智能体Q-学习研究
4) B-Q learning
B-Q学习
1.
Aiming to the problem of dynamic scheduling in knowledgeable manufacturing system,the B-Q learning algorithm is proposed by combining the high intelligent characteristic of knowledgeable manufacturing cell,and a kind of adaptive scheduling control strategy is presented based on this algorithm.
针对知识化制造系统中的动态调度问题,结合知识化制造单元的高智能特征,提出了B-Q学习算法,并基于该算法构建了一种自适应调度控制策略。
5) Q learning
Q学习
1.
Application of improved Q learning algorithm to job shop problem;
改进的Q学习算法在作业车间调度中的应用
2.
The paper first presents an objective model of task scheduling,and then based on the analysis of Q learning algorithm,the Markov decision process description of the scheduling problem is given.
首先建立任务调度问题的目标模型,在分析Q学习算法的基础上,给出调度问题的马尔可夫决策过程描述;针对任务调度的Q学习算法更新速度慢的问题,提出一种基于多步信息更新值函数的多步Q学习调度算法。
3.
In this paper, a mechanism of behavior learning for soccer robot action selection based on Q learning and case based learning is proposed.
提出了一种足球机器人基于Q学习与案例学习(CBL)相结合的自主学习机制。
6) Q(λ) learning
Q(λ)学习
补充资料:逼近
逼近
approximation
通近【即pm劝m浦门;anl平.院~u栩],亦称近似 把一些数学对象用另一些在某种意义下与其相似的对象来代替,采用这种方法,可以把研究一个数学对象的数值特征和量的性质的问题,转化为研究另一些比较简单、比较方便的对象(例如具有容易计算的特征和已知性质的对象).在数论中,研究DioPhantus逼近,特别是研究用有理数逼近无理数.在几何学和拓扑学中,研究曲线、曲面、空间和映射的逼近.实际上,某些数学分支几乎专门研究逼近,例如函数逼近论和数值分析方法的理论.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条