1) M-L algorithm
M-L算法
2) L-M algorithm
L-M算法
1.
A combined neural network fuzzy controller based on L-M algorithm;
一种基于L-M算法的组合神经网络模糊控制器
2.
Application of L-M algorithm with N-W method in fault diagnosis of transformer;
结合N-W方法的L-M算法在变压器故障诊断中的应用
3.
The L-M algorithm was employed in the BP neuron network through the comparison of three different kinds of algorithms, and the effects of factors, such as the content of volatile matter(Vdaf) in raw coals, the ratio of H and C (H/C) in coal chars, pyrolysis temperature, heating rate and gasification temperature, on the prediction error of BP neuron network were investigated.
通过三种算法的比较,采用BP神经网络的L-M算法,分析煤的制焦终温与制焦升温速率、气化反应温度、Vdaf和煤焦H/C原子比等不同因子对煤焦气化反应速率模型预测精度的影响,建立了基于Matlab下神华大柳塔单煤种四因子和神华-兖州双煤种五因子煤焦高温气化反应速率神经网络预测模型,得到比较满意的结果,其相对误差分别是0。
3) levenberg-marquardt algorithm
L-M算法
1.
An artificial neural network(ANN) using Levenberg-Marquardt algorithm for network training is presented to diagnose faults in turbine generator set equipment.
就BP网络的不足,提出了一种改进的BP神经网络模型,并使用L-M算法用于汽轮发电机组故障的诊断。
2.
Levenberg-Marquardt algorithm is involved in training BP neural network weights.
将AHP法与改进的BP神经网络相结合建立了供应链合作伙伴选择模型,并使用L-M算法对神经网络权值进行训练,实现了对供应商的多标准评价;所用的评价指标体系选取全面,适用于多种类型的供应链合作伙伴选择。
3.
In the end,network is trained and forecasted by Levenberg-Marquardt algorithm.
然后建立三层BP神经网络模型,并采用L-M算法进行网络训练与预测,实现公寓的负载识别功能。
4) L-M arithmetic
L-M算法
1.
Second,L-M arithmetic that is improved train arithmetic of BP network is used.
本文首先设计了一种比较新型的基于神经网络的模糊控制器,然后使用了一种改进的BP网络训练算法L-M算法,最后对训练好的控制器进行仿真实验,实验中加入了一个稳态参数,实验结果表明其具有较好的控制性能。
5) L-M optimization algorithm
L-M优化算法
1.
Model for predicting crop water requirements by using L-M optimization algorithm BP neural network;
基于L-M优化算法的BP神经网络的作物需水量预测模型
2.
The various influemce factors to the physicochemical properties of lanthanide are studied in this paper and the physicochemical properties of nine kinds of lanthanide are associated too using lanthanide foundation state value L,electronegativity 4f,electronic arrangement periodic factors q and ionic radius as the parameters and using the BP neural network based on L-M optimization algorithm.
以镧系元素的基态L值、鲍林电负性、4f电子排布周期因子q以及离子半径等为参数,使用以L-M优化算法为训练方法的BP神经网络,对9种镧系元素物理化学性质进行了关联。
6) L-M optimized algorithm
L-M优化算法
1.
Prediction model for rice stem borer based on L-M optimized algorithm and its preliminary application;
基于L-M优化算法的水稻螟虫预测模型及其初步应用
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条