1) transformation matrix of B-spline bases
B样条基转换矩阵
1.
With this method,the mathematical mode for the degree reduction of B-spline curves is established by the transformation matrix of B-spline bases,and then the problem of degree reduction of B-spline curves is turned into the problem of getting the least squares solution of a linear equation system.
该方法利用B样条基转换矩阵建立B样条曲线降阶的数学模型,将B样条曲线的降阶问题转化为求线性方程组的最小二乘解问题。
2) B-spline transform
B样条转换
1.
Fast image interpolation is implemented by means of fast B-spline transform.
采用快速B样条转换实现快速图像插值可以提高运算速度。
3) B spline moment
B样条矩
1.
Zernike moment invariants, Haar moment invariants, Shannon moment invariants and B spline moment invariants were calculated respectively in human facial expression images.
将Zernike矩和小波矩运用于面部表情识别问题 ,分别计算了面部图像的Hu矩、Zernike矩、Haar矩、Shannon矩和B样条矩 ,以模式识别中常用的类间距作为依据 ,提取了面部图像的各种矩的最好特征和次好特征 ,并对Zernike矩和B样条矩的识别能力和抗噪性进行了比较 。
4) B spline
B样条基
1.
In The uniform B spline with shape parameter of seven order is given.
给出了带形状参数的七阶均匀B样条基函数,使七阶均匀B样条基函数是它的一个特例。
2.
In this paper the uniform B Spline with shape parameter of five degree was given,of which the uniform B Spline of five degree is a special example.
给出了五阶带形状参数的均匀B样条基函数 ,使五阶均匀B样条基函数成为它的一个特例 。
3.
Gives the uniform B spline with shape parameter of six order.
给出了带形状参数的六阶均匀B样条基函数;使六阶均匀B样条基函数成为它的一个特例。
5) B-spline basis
B-样条基
1.
The transformation between the B-spline basis and the truncation basis of the cubic spline functions;
样条函数的B-样条基和截断幂基表示之间的转换
2.
However, the B-spline basis is not orthogonal, this thesis discusses the orthogonalbasis in 3-degree spline space.
但是,B-样条基不是正交基。
6) conversion matrix
转换矩阵
1.
The system's model was gained by Hamilton principle,in which the active flexible isolation system was simplified by beam element with electric DOFs and space conversion matrix.
通过用带电自由度的梁元模型及空间转换矩阵对主动弹性隔振系统进行简化和采用Hamilton原理建立系统的运动方程对系统进行模态分析,采用振型叠加法计算系统的动态响应,并从运动方程中进一步求取系统频响函数矩阵,分析系统频域特性。
2.
In order to exert its effect on geometric design, we should use a simple method to derive the conversion matrix from the Bernstein basis to the Wang Ball basis.
为了在几何设计中更好地发挥其作用 ,应当用简单的方法求出Bernstein基到Wang Ball基的转换矩阵 。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条