1) Time dependent traveling salesman problem
时间依赖型旅行商问题
1.
Time dependent traveling salesman problem(TDTSP)is an extension of the traveling salesman problem(TSP),in which the travel time or cost between two nodes depends on not only the distance between the nodes,but also the time of day or the node position in the Hamilton cycle.
时间依赖型旅行商问题(TDTSP)是旅行商问题(TSP)的延伸。
2) traveling salesman problem
旅行商问题
1.
Improved particle swarm optimization based on k-center and its application in traveling salesman problem;
基于k-中心点法的改进粒子群算法在旅行商问题中的应用
2.
Modified particle swarm optimization algorithm for traveling salesman problem;
改进粒子群优化算法求解旅行商问题
3.
Hybrid approach based on Ant Colony System for solving traveling salesman problem;
基于MATLAB的混合型蚁群算法求解旅行商问题
3) Travelling salesman problem
旅行商问题
1.
Predatory search algorithm based on tabu list and its experimental research on travelling salesman problems;
基于禁忌表的捕食搜索算法及其在旅行商问题中的实验研究
2.
The problem of path planning for coordinated mine clearance operation of multiple autonomous underwater vehicles was formulated as a kind of multiple travelling salesman problem and two models of multiple travelling salesman problem were developed from the mission background information.
将智能水下机器人集群协同清扫水雷的路径规划问题归结为多人旅行商问题,并根据清扫水雷的任务背景提出两种多人旅行商问题模型。
3.
This paper introduces six different random sampling methods for cycling permutations and carries out a further study of solving the travelling salesman problem by simulated annealing.
提出了循环排序中6种不同的随机抽样方式,对旅行商问题(TSP)的模拟退火求解进行了进一步深入研究。
4) TSP
旅行商问题
1.
Application Research for TSP Based on Neural Network-Ant Colony Algorithm;
蚁群神经网络在旅行商问题中的应用
2.
Improved Genetic Algorithms for TSP;
旅行商问题(TSP)的改进遗传算法
3.
An improved Simulated Annealing Algorithm to TSP;
旅行商问题(TSP)的改进模拟退火算法
5) travelling salesman problem(TSP)
旅行商问题
1.
Aimed at many fields combinational optimization problems being transformed into travelling salesman problem(TSP),a complex particle swarm optimization(CPSO) algorithm was put forward to solve TSP.
针对众多领域的组合优化问题可转化为旅行商问题(TSP),提出求解TSP的粒子群复形(CPSO)算法。
2.
The operation of the genetic algorithm of Travelling Salesman Problem(TSP) needs lots of time and it is easy to fall into the local optimal solution.
针对旅行商问题(Travelling Salesman Problem,TSP)的遗传算法的大规模操作,需要大量运算时间而且容易造成局部最优解,提出一种并行混合遗传算法。
3.
When the method of antibody distilling and injecting used in Travelling Salesman Problem(TSP) were presented,the convergence of AIGA was proven theoretically.
结合旅行商问题(TSP),给出了示范抗体的提取和注射方法,并给出了算法收敛性的理论证明。
6) traveling salesman problem(TSP)
旅行商问题
1.
On this basis,a new network was proposed to solve traveling salesman problem(TSP) by decaying self-feedback.
在此基础上,通过衰减自反馈,提出了求解旅行商问题(Traveling Salesman Problem,TSP)的新网络。
2.
To increase the convergence speed of the genetic algorithm in solving the traveling salesman problem(TSP),combined with adaptive operators and competitive strategy between parents and their children,an adaptive genetic algorithm based on the regional search is proposed.
为了提高用遗传算法求解旅行商问题(TSP)的收敛速度,结合自适应算子和父子竞争策略等优化思想,提出了基于分区搜索的自适应遗传算法。
3.
This paper proposed a full set of evolutionary strategies that include new method of encoding of chromosomes,invert,rotate and swap operations,for solving traveling salesman problem(TSP)by genetic algorithm(GA)The strategies are different from those commonly used in GA except the invert operation.
本文提出用遗传算法(GA)求解旅行商问题(TSP)的一整套进化策略,包括染色体的编码、反向运算、循环运算、交换运算。
补充资料:时间
实际上,时间单位首先从天文观测来确定的,“1平太阳日或1天(1昼夜)”是以地球相对于太阳的自转周期为基准来计量的,一个平太阳日的1/86400为1秒;后来发现地球自转不均匀,1960年国际度量衡大会把时间基准改为以地球绕太阳公转周期,即规定为1900年地球公转周期(回归年)的1/31556925.9747为1秒;随着精确、稳定的原子钟制成,1967年国际度量衡大会规定国际单位制原子时的时间单位“秒(长)是两个超精细能级之间跃进所对应辐射9192631770个周期的持续时间”。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条