说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 水平冻结孔
1)  horizontal freezing hole
水平冻结孔
1.
Itprovided one kind of effective method and a devicefor measuring the horizontal freezing hole incomplicated environment.
阐述了地铁隧道旁通道工程水平冻结孔测斜应用经纬仪和专用测斜平台,为在复杂环境下的水平冻结孔测斜提供了有效方法。
2)  horizontal freezing
水平冻结
1.
Quasi-coupling numeric analysis of frost heave effect of horizontal freezing in artificial ground;
人工地层水平冻结冻胀效应准耦合数值分析
2.
The freezing technology application of horizontal freezing and vertical freezing was discussed.
首先对人工冻结技术特点、发展情况和研究进展进行了叙述,然后对水平冻结和竖向冻结等各种冻结技术的应用情况进行讨论,最后指出了目前人工冻结技术在理论研究和工程管理等方面存在的不足以及进一步研究和发展的初步方向。
3.
The article presents the reinforcement and structural construction of the cross tunnel and pump station of the running tunnel between Lancun Rd station and Pudongnan Rd station of Mingzhu Line of Shanghai Metro,which are assisted by horizontal freezing.
主要介绍了上海地铁明珠线蓝村路站-浦东南路站区间隧道联络通道、泵站采用水平冻结加固情况下,隧道支护及结构施工过程,分析了隧道内矿山法施工旁通道对地表及隧道结构产生的影响及解决措施,指出了矿山法施工技术在市政及地铁工程施工中的技术可行性。
3)  freeze hydrological hole
冻结水文孔
4)  horizontal freezing
水平冻结法
5)  level freezing technology
水平冻结技术
6)  Horizontal Freezing
水平冻结加固
1.
Horizontal Freezing Technique for the consolidtion of Soft Soil in A Thoroughfare of Shanghai Metro;
上海地铁旁通道软土地基水平冻结加固技术
补充资料:磁冻结定理
      阐述理想导电流体和磁场一起运动的规律的定理,即①开尔文定理:通过和理想导电流体一起运动的任意封闭曲线所围面积的磁感应通量守恒;②亥姆霍兹定理:在理想导电流体中,起初在某磁力线上的流体元以后一直位于此磁力线上。此两定理与涡旋在流体中运动的两条同名定理类似。
  
  假设流体是理想导电流体(电导率σ=∞),则描述磁场变化率的方程为:
  
  
  
    式中B为磁感应强度;v为流体速度(见磁流体力学基本方程组)。此方程和无粘性不可压缩流体的涡旋方程相似,故有上述同涡旋相对应的两条定理。
  
  为了解磁冻结定理的实质,可考察流体最简单的运动对磁场的影响。假设在理想导电流体中有一均匀磁场B(见图),在垂直于磁场的平面上取一半径为 R的流体环г0。如果г0以径向速度vR向外膨胀,由于它切割磁力线,必然产生顺时针环向电场vRB。由于流体电阻为零,在г0中必然产生一等量逆时针环向电场E,否则将发生无穷大电流。因此,根据法拉第电磁感应定律可以算出,流体环从г0经时间dt膨胀到г 位置时,环内的磁感应通量必须减少2πRvRBdt,方可抵消流体环膨胀时切割磁力线产生的电场 vRB。这些应减少的磁感应通量正好在г环和г0环之间,所以如果从运动的流体环上看,流体环围绕的磁感应通量不变,磁力线随着流体环一起向外膨胀,即流体如同固结在磁力线上。把这种简单的流动情况推广到理想导电流体的任意流动情况,就可得到磁冻结定理中的两条定理,它们都有严格的数学证明。
  
  1942年H.阿尔文首次提出:"理想导电流体不能作垂直于磁力线的相对流动,因此流体物质固结在磁力线上。"1960年S.戈德斯坦经过严格的论证,得到描述亥姆霍兹定理的数学形式。
  
  

参考书目
   V. C. A.Ferraro and C.Plumpton,Introduction to Magneto-fluid Mechanics,Oxford Univ.Press,London,1961.
   T. J. M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd andJ. J. Sanderson,Plasma Dynamics,Nelson,London,1969.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条