1) inverse hysteretic operator
滞回逆算子
1.
As CMAC neural network could not be used to approximate the multi-valued mapping of an inverse hysteresis directly,an inverse hysteretic operator was proposed to transform the multi-valued mapping into a one-to-one mapping which could enable neural networks to approximate the behavior of an inverse hysteresis.
由于CMAC神经网络不能够直接逼近滞回逆这种具有记忆性的多映射现象,通过引入一个滞回逆算子,将多映射的滞回逆转换成一一映射,然后运用CMAC神经网络控制器来逼近这个一一映射,从而建立一个基于CMAC神经网络的滞回逆模型。
2) elementary inverse hysteresis operator (EIHO)
基本迟滞逆算子
1.
The continuous transfor-mation technique is used to construct an elementary inverse hysteresis operator (EIHO), which extracts the elementary information of inverse hysteresis.
采用连续坐标变换的方法,建立基本迟滞逆算子(EIHO),EIHO为神经网络提供了基本的迟滞逆信息,并与迟滞逆的输入一起作为神经网络的输入,使迟滞逆由多值映射关系转化为一对一映射关系,从而达到用神经网络逼近迟滞逆的目的。
3) Dynamic inverse hysteresis operator
动态迟滞逆算子
4) hysteresis algorithm
滞回算法
1.
A novel dynamic bandwidth allocation algorithm named the hysteresis algorithm is presented based on VBR video traffic prediction in this paper, The buffer size requirement and cell loss rate are both improved significantly compared with threshold algorithm presented by Girish and the allocation scheme based on GOP scene detection presented by Youssef.
基于VBR视频流量预测提出了一种新的动态带宽分配算法———滞回算法。
5) causal operator
滞后算子
1.
By means of the causal operator determined by the initial pmblem of the differentio-integral equation, the class of the noulinear diffusion model of the biological population was translated into the initia-boundary problem of the parabolic equation with the causal operator.
构造并分析了一个由微分积分方程初值问题确定的滞后算子,利用这个滞后算子将一类非线性生物种群扩散模型转化为一个带滞后算子的抛物型偏微分方程的初边值问题。
2.
A mathematical model describing memory effects, the causal operator is introduced, the ordinary differential equation and the parabolic equation with the causal operator are discussed and sufficient conditions of existence, positiveness and uniqueness for their solutions are given.
介绍了一种不同于时滞的滞后现象的数学模型——滞后算子,讨论了带有滞后算子的常微分方程和抛物型方程,给出了解的存在、唯一和正性的充分条件。
6) time-delays operator
时滞算子
补充资料:滞回
1.逗留徘徊。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条