1) topology importance degree
拓扑重要度
1.
The proportionality is analyzed based on the structure proportion and the resource distribution proportion and the former means the difference of topology importance degree among the nodes in the same layer,the more the worse;at the meanwhile,the resource distribution proportion means the functional importance degree.
其中对网络均衡性的分析是建立在结构均衡和资源分配均衡上的,结构均衡是通过同层节点拓扑重要度差异大小来体现的,差异大则结构均衡性差;资源分配均衡是通过网络节点功能重要度反映出的,并认为功能重要度实质上是节点拓扑结构重要度的"加权"。
2) topology reconstruction
拓扑重建
1.
An algorithm for topology reconstruction is promoted that takes as input an unorganized set of points with known density and carries out as output simplicial surfaces.
提出了一种基于曲面局平特性的,以散乱点集及其密度指标作为输入,以三角形分片线性曲面作为输出的拓扑重建算法。
3) topological reconstruction
拓扑重建
1.
In this paper,we present a topological reconstruction algorithm based on red-black tree.
本文提出的基于红黑树的STL文件快速拓扑重建算法以红黑树为基础数据结构,采用以三角片为单位的思想,将冗余点去除与拓扑结构的建立相融合,完成了对STL文件的半边拓扑结构的快速重建,同时还保证了良好的可扩展性。
2.
The main contents are: a method for calculating the key value of hashing during topological reconstruction,common errors and their relationship between topological structures of mesh,a method and procedure for repairing errors.
研究了拓扑重建过程中散列Key值的计算方法,常见错误与拓扑信息的关联,修复错误的方法与流程。
5) Topological Density
拓扑密度
6) topological degree
拓扑度
1.
The upper and lower solutions of m-point boundary value problems at resonance and topological degree;
m点边值共振问题的上下解和拓扑度
2.
Utilizing laray-schauder topological degree theorems in menger PN space and with the diversification of bounding conditions that the operators should hold,the existence of the solution of nonlinear operator equations Tx=Lx and Tx=Lx+p are studied.
利用概率线性赋范空间中的Leray-Schauder拓扑度理论,通过改变算子所满足的边界条件,研究了非线性算子方程Tx=Lx和Tx-Lx+p的解的存在性问题,在不要求方程满足L≥1的条件下(在文[1,2]中都要求方程满足条件L≥1),得到了几个新的定理。
3.
In this paper,using Brouwer topological degree theory,it is proved that the theorem still holds if we substitute star shape region for convex set.
利用Brouwer拓扑度理论,证明定理中凸性条件进一步减弱为星形区域时,其结论仍然成立。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条