2) metric topology
度量拓扑
1.
In this paper, the relations among the point-compact continuous multifunction spaces under compact-open topology, uniform convergence topology, uniform convergence topology on compacta and metric topology, from a topology space to a metric space, are investigated.
本文研究拓扑空间到一致空间上点紧致的连续集值映射空间在紧开拓扑、一致收敛拓扑、紧致处一致收敛拓扑和度量拓扑等之下它们之间的关系,利用诱导映射和嵌入的方法给出了拓扑空间到实直线上点紧致的连续集值映射空间可度量化的若干等价条件。
3) pseudo-metric topology space
伪度量拓扑
4) topological relationship measurement
拓扑关系度量
5) metrization of topological group
拓扑群的度量化
6) metrizability of topological groups
拓扑群可度量性
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条