1) fractional order of approximation
分数阶逼近
2) Digital step approaching
数字阶梯逼近法
3) fractional approach
分数逼近法
1.
According to this method,fractional approach for π and SANFEN SUNYI Tuning System research are developed.
任何一个多位小数可以用一个分数来近似表示,即采用多位小数的分数逼近法,按一定的程序,可使误差越来越小,直至达到所需的精确度。
4) degree of approximation
逼近阶
1.
In this paper we introduce S-B-B operators and study its Convergence and degree of approximation.
本文引入Sikkema-Bernstein-Bézier算子,并研究其收敛性和逼近
2.
In this paper,a new type of Kantorovich operator was constructed,and the convergence and degree of approximation of this operator in Orlicz spaces were discussed.
构造了一类新型的Kantorovich算子,讨论了该算子在Orlicz空间内的收敛性与逼近阶的估计问题。
3.
A class of two dimension Meyer - Konig and Zeller Opcrators is constructed, and its degree of approximation and direct theorem on continuous function space and a class of interpolation space are obtained.
构造了一类二维Meyer-KonigandZeller算子,并得到了它关于连续函数空间和一类插补空间的逼近阶和直接定理。
5) order of approximation
逼近阶
1.
They had also estimated the order of approximation.
对于给定的函数f∈W′M[-π,π]d,Mbasker和Micheli已构造出具体的神经网络逼近Sobolev类函数及其导数并给出逼近阶的估计。
2.
The best order of approximation by (N, P) means of T-F series is discussed, and asufficient condition to reach this order is found.
讨论了算子(N,P)的最佳逼近阶以及达到此逼近阶的一个充分条件。
3.
The approximation of differentiable functions by a kind of interpolatory rational functions is discussed,and the corresponding order of approximation is obtained.
讨论了一类插值有理函数对可微函数的逼近,得到了相应的逼近阶。
6) approximation order
逼近阶
1.
Construction of interpolatory multiscaling functions with high approximation order;
具有高逼近阶的插值多尺度函数的构造
2.
Increasing approximation order of finite element multi-scaling functions by two-scale similarity transform;
利用两尺度相似变换提高有限元多尺度函数的逼近阶
3.
Optimal approximation order and optimal smoothnessof a multivariate dual scaling functions;
多元对偶尺度函数的最优逼近阶和最优光滑性
补充资料:渐近逼近法
分子式:
CAS号:
性质:又称润滑逼近,逐步逼近,渐近逼近法。是数学中求解函数的一种叠代方法。对函数类A中给定的函数f(x),要求在另一类较简单的便于计算的函数类B中,求函数p(x)∈B,使P(x)与f(x)之差在某种度量意义下最小。函数类A通常是C[a、b],函数类B通常是代数多项式、分式有理函数或三角多项式。
CAS号:
性质:又称润滑逼近,逐步逼近,渐近逼近法。是数学中求解函数的一种叠代方法。对函数类A中给定的函数f(x),要求在另一类较简单的便于计算的函数类B中,求函数p(x)∈B,使P(x)与f(x)之差在某种度量意义下最小。函数类A通常是C[a、b],函数类B通常是代数多项式、分式有理函数或三角多项式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条