2) hyperbolic tangent function
双曲正切函数
1.
A theoretical model for predicting ground displacement and deformation due to mining of phosphate body in Wenjiaping by using hyperbolic tangent function was given in this paper.
针对文家坪磷矿地下开采岩体移动变形问题,给出了用于预测分析地下开采引起地表移动变形的双曲正切函数模型。
2.
Aiming at this,this article proposed the "process control" method and established the process curve based on hyperbolic tangent function.
针对这种情况,提出了土钉支护结构水平位移安全监测"过程控制"的概念,建立了双曲正切函数的过程曲线,旨在对土钉支护结构施工全过程做到安全有效的监测和控制,并将所建立模型与理正岩土计算软件的结果进行比较,较好地符合计算结果。
3.
This guidance law avoids the chattering of line-of-sight angular rate of attack missile by introducing the hyperbolic tangent function.
该导引律设计主要通过引入双曲正切函数,消除了攻击导弹的视线倾角增量变化律的抖动现象。
3) hyperbolic function
双曲正切函数
1.
The process of fuzziness, fuzzy inference and defuzziness can be expressed in the sum of hyperbolic functions of generalization state variables.
提出一种广义模糊双曲正切模糊模型(GFHM),此模型可以看做是模糊双曲正切模型的扩展·采用广义变量的双曲正切函数和的形式表达了模糊化、模糊推理和反模糊化的运算过程·并采用Stone Weierstrass定理证明了此模型可以逼近定义在紧集上的任意连续实函数,具有全局逼近性,可以用于复杂系统的建模
4) hypertangent
双曲正切函数
1.
The article made use of traveling ware solution of one dimentional undulat eqution, througy alternate, thento introduce hypertangent, as new variable and make use of infinitesimal connections of it, with analternate.
利用一维波动方程行波解的形式,通过变量替换,再引入双曲正切函数作为独立变量并利用其独特的微分关系给变换,将Kortewey-de Vries方程简化为常微分方程,由此得出它的解。
2.
A series of alternatives are given , Fisher equation is simplified into ordinary infinitesimal equation and its solution is obtained by alternating, introducing hypertangent as independent variable and making use of its infinitesimal connection.
通过变量替换, 再引入双曲正切函数作为独立变量, 并利用双曲正切函数其独特的微分特性, 给出一组变换, 将Fisher方程简化为常微分方程, 由此得出它的解。
3.
A series of alternation is given,rectified Kortewey-de Vries equation be simplified into ordinary infinitesimal equation and its solution is obtained by alternation,introducing hypertangent as independent variable and making use of its infinitesimal connection.
通过变量替换,再引入双曲正切函数作为独立变量,并利用双曲正切函数其独特的微分特性,给出1组变换,将修正的Kortewey-deVries方程简化为常微分方程,由此得出它的解。
5) tanh-function method
双曲正切函数法
1.
In this paper,multiple traveling wave solutions for BBM-Burgers equation have been found by use of an extended tanh-function method.
本文应用推广的双曲正切函数法得到了著名的BBM-Burgers方程和KdV方程的守恒形式,一类五阶KdV方程的多重行波解。
2.
With the aid of symbolic computation system Maple and by using the extended tanh-function method,the explicit exact travelly wave solutions of extended higher-order nonlinear schrdinger equation including the self-steepening and self-frequency shift effect are obtained,which include bright soliton,dark soliton,soliton-like solutions and a new type of soliton solutions.
利用扩展的双曲正切函数法,并借助于符号计算软件Maple,研究了考虑自陡峭效应、自频移效应后的修正高阶非线性薛定谔方程,获得了多组显示精确行波解,主要包括亮孤子解、暗孤子解和一种新形式的复合孤子解。
6) tanh function
正切双曲函数
补充资料:正切函数
形式是y=tanx,是直角三角形两条直角边的比值.
它是区别于正弦函数的又一三角函数,它与正弦函数的最大区别是定义域的不连续性.
正切函数是周期函数,正切函数的周期为π,是奇函数.
正切曲线除了原点是它的对称中心以外,实际上所有点都是它的对称中心.
正切函数性质:
正切函数
图象:如图
定义域:{x|x≠(π/2)+kπ,k∈z}
值域:r
最值:无最大值与最小值
零值点:(kπ,0)
对称性:
轴对称:无对称轴
中心对称:关于点(kπ,0)对称
周期:π
奇偶性:奇函数
单调性:在(-π/2+kπ,π/2+kπ)上都是增函数
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条