说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 弱线性无关
1)  weak linear independence
弱线性无关
1.
Strong linear dependence and weak linear independence
强线性相关与弱线性无关
2)  weak linear dependence
弱线性相关
1.
Introduces the concept of two multiple random vectors canonical corrlation coefficient,linear dependence and weak linear dependence,the relationship of canonical correlation coefficient and linear dependence is also presented.
介绍了两个多维随机向量典型相关系数、线性相关、弱线性相关等概念,以及典型相关系数与线性相关性的关系。
3)  linear independence
线性无关
1.
Discussion of linear independence on several complex function sequences
关于几种复杂函数序列的线性无关性的讨论
2.
Strong linear dependence and weak linear independence
强线性相关与弱线性无关
3.
Based on Dubinsky’s APOS theory,this paper investigated and analyzed how the freshmen at university in China understood the concept of linear independence and their typical misconceptions.
学生难以处理低维空间上线性无关向量几何表示与代数表示之间的转换。
4)  linear independent
线性无关
1.
Applied Liouvlle Formu la of linear homogenous equation set, solves its special problem, gives the known solution which isnt zero and discusses how to find another particular one that is linear independent.
应用线性齐次方程组的刘维尔公式 ,解决了较特殊的二维线性齐次方程组的求解问题 ,给出了已知其一非零特解 ,求另一与之线性无关的特解的方
2.
Letn0,n1)…,np be p+1 positive integers such thatfor a maximal linear independent group, say(s≤p).
fp中的某个最大线性无关组(不妨设为s≤p)满足则必有此结论改进了NiinoK,OzawaM,TodaN。
3.
Secondly,an initial solution is obtained by three linear independent translational motion of the camera.
首先对Kruppa方程进行简化,确定了经简化后的目标函数,再通过摄像机的三次线性无关的任意平移运动确定初值,然后用非线性优化目标函数法精化初值。
5)  linear irrelevance
线性无关
6)  linearly independent
线性无关
1.
The article by several opposite examples illustrated the former method of finding vector group s maximum linearly independent vector group is imperfect, sometimes even lead to wrong results.
构造并证明了线性无关向量组的一个充分条件,给出了求极大无关组的一个简单可行的新方法。
2.
The article sums up eight methods to judge the linearly dependent and the linearly independent of vectors.
文章总结出了判断向量线性相关和线性无关的八种方法。
补充资料:非线性相关
如果两种相关现象之间并不表现为直线的关系,而是近似于某种曲线方程的关系,则这种相关关系称为非线性相关。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条