1) AL6XN austenitic steel
AL6XN超级奥氏体钢
1.
TEM observations revealed dislocation tangles,rather than dislocation cells in the steel after the fatigue-test at 600 ℃,and the typical striations on the fracture surfaces without the secondary cracks are observed by SEM,which is related to the dynamic strain aging occurred in the AL6XN austenitic steel.
研究了AL6XN超级奥氏体钢在650~750℃和120~220 MPa应力水平下的高温蠕变特性,以及300和600℃不同恒应变幅值条件下的疲劳特性。
2) super austenitic stainless steel
超级奥氏体不锈钢
1.
The concept of super austenitic stainless steel appeared with super ferrite stainless steel and super double phases stainless steel together.
超级奥氏体不锈钢的概念是与超级铁素体不锈钢及超级双相不锈钢一起出现的。
2.
The liquids of N08904 super austenitic stainless steel was computed and tested by means of theoretical calculation and thermal analysis,reasonable overheat was put forward and leaking problem of molten steel during continuous casting was solved and continuous casting production had come into effect.
采用理论计算与热分析相结合的方式对N08904超级奥氏体不锈钢的液相线温度进行了计算测试,提出了合理的过热度参数,解决了连铸易漏钢问题,实现了连铸生产。
3.
The results showed that Cr20Ni18Mo6MnVSi super austenitic stainless steel in the chloride solution had excellent corrosion resistance properties after solution treatment at 1100℃ for 2h and followed by the aging treatment at 520℃ for 4h.
1型超级奥氏体不锈钢经1100℃固溶2h+520℃时效4h处理后,在高浓度氯离子溶液中的耐腐蚀性能优异。
4) austenite steel
奥氏体钢
1.
The interface lattice misfitting theory can not explain that TiC and CaS act as an efficient catalyzer during the non-equilibrium solidification of austenite steel.
利用界面共格对应理论无法解释奥氏体钢非平衡凝固过程中TiC、CaS为奥氏体枝晶有效异质核心的现象。
2.
The performance of granular γ+(Fe,Mn)3C eutectics reinforced austenite steel matrix composites (EAMC) was studied, and the strengthening/toughness match and wear resistance were analyzed.
在研究团球γ+(Fe,Mn)3C共晶体增强奥氏体钢基自生复合材料(EAMC)的力学与耐磨性能的基础上,分析了EAMC的强韧化及耐磨机理。
3.
The effect of sliding velocity on the friction behaviors of in situ granular 7+(Fe, Mn)3C eutectics reinforced austenite steel matrix composites (EAMC) has been investigated by the pin-on disc dry sliding tests and scanning electron microscopy (SEM) observation.
利用MPX-2000型主轴盘销式磨损实验机和扫描电子显微镜(SEM)研究了相对滑动速度对团球γ+(Fe,Mn)_3C共晶体增强奥氏体钢基自生复合材料(EAMC)摩擦学性能的影响。
5) austenitic steel
奥氏体钢
1.
The direct relationship between stacking fault energy and phase transformation driving force of austenitic steels and the effect of stacking fault energy and strain energy on the morphology of martensite are deduced.
导出了在奥氏体钢中相变驱动力与层错能的关系以及层错能和应变能对马氏体形态的影响规律。
2.
The effects of stacking fault energy and strength on phase transformation in cryogenic austenitic steels were studied.
研究了低温奥氏体钢中层错能和强度对相变的作用 ,导出了相变临界分切应力和层错能与强度之间的关系式。
6) austenitic steels
奥氏体钢
1.
On the basis of systematical study,the comprehensive effects of alloying elements in cryogenic austenitic steels were analyzed.
在系统研究结果的基础上,分析总结了低温奥氏体钢中合金元素的综合作用。
2.
The recent developments of cryogenic austenitic steels are reviewed.
综述了低温奥氏体钢的研究进展 论述了高锰、高氮奥氏体钢低温脆断模式及其断裂机理 ,指出不同合金化的高锰、高氮奥氏体钢有着不同的层错能、相变临界分切应力、解理强度、屈服强度 ,因而有不同的断裂现象 ,包括晶间开裂、穿晶脆断、退火孪晶界开裂 着重探讨了穿晶脆断现象 ,指出穿晶脆断是高锰含氮奥氏体钢特有的脆性断裂形式 提出了今后的研究方
补充资料:Al
元素符号: al 英文名: aluminum 中文名: 铝
相对原子质量: 26.9815 常见化合价: +3 电负性: 1.61
外围电子排布: 3s2 3p1 核外电子排布: 2,8,3
同位素及放射线: al-26[730000y] *al-27 al-28[2.3m]
电子亲合和能: 48 kj·mol-1
第一电离能: 577.6 kj·mol-1 第二电离能: 1817 kj·mol-1 第三电离能: 2745 kj·mol-1
单质密度: 2.702 g/cm3 单质熔点: 660.37 ℃ 单质沸点: 2467 ℃
原子半径: 1.82 埃 离子半径: 0.51(+3) 埃 共价半径: 1.18 埃
常见化合物: al2o3 alcl3 al2s3 naalo2 al2(so4)3 al(oh)3
发现人: 厄斯泰德、维勒 时间: 1825 地点: 丹麦
名称由来:
拉丁文:alumen, aluminis(铝)。
元素描述:
柔软轻质的银白色金属,在地壳中含量第三。
元素来源:
自然界完全没有铝单质存在。可以电解铝土(al2o3)制取铝。
元素用途:
上自飞机下到易拉罐应用广泛。因为纯铝太柔软,所以要加入不到1%的硅或铁以加大其硬度和强度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条