1) properties of sum function
和函数性质
2) function characteristics
函数性质
1.
This paper mainly studies on how to turn the inequality problem into the function problem, making use of function characteristics to study and solve the inequality problem, urging the students to master the function thinking method of demonstrating the inequality, and promoting the students ability of analyzing and solving the problems.
将不等式问题转化为函数问题,利用函数性质来研究、解决不等式问题,使学生掌握不等式证明的一种函数思想方法,从而提高学生的分析问题与解决问题的能力。
4) kernel function quality
核函数性质
6) the character of exponential function
指数函数性质
补充资料:和函数
和函数
sum function
z(;)=Li(x)一艺Li(x‘」)一1092+ ,f dt 一十.一一一一一兰上一一一一一 干不L‘一l)109[的v()11 Mongoldt的另一表示,其中x>l,J函数(J-于飞1 11e tio:1)是 J(·卜孔、二粉,:,:],lr一J Li(.、)是对数积分(10助ritllnlic inte脚l) ,__、_1:_「’「‘d。.亡d:l Li〔.戈)二1121111一卫+l止】止二一} 、OL石109 rl丫:logt」和函数【姗彻Ktioll;cyMMaTopH‘打n网H,」,函数f白勺 x)l的函数,表示在自然数集月簇x上函数.厂的值j(。)的和艺,、、.八。).和函数是表示数列的各种性质的基本方法之一 和函数举例:钱x的素数的个数;少(x)=艺、二八(”)—qe6““e“函数(Chebyshev fullction);所有。成x的除数的个数,等等.(见11],【2]). 基本问题是找出和函数的尽可能精确的表示式,而对于没有渐近式的和函数,则是寻求当x取大值时它的模的最佳估计. Ca理hy积分定理(Cauchy integrulthe~)和形如 F(。)=艺f(。)n一 月二!的场dchlet级数(D流』Uetsenes)是研究和函数的解析方法的基础.如果这级数当Re:>a。)1时绝对收敛,则对于非整数x及c>叮。,等式 Xr、。)一招一{:(、)羊、、 认’“’2瓜。_兮二一、一s成立.由此及利用F(s)的解析开拓,移动积分路径至左边某直线Res=吓.<0,再沿新的路径估计积分,就可以得到对和函数f的相应的估计.例如,当/(n)=A(叼时,积分可以移至Re、二一的上,则得到关于少(x)的Ri~一von Mallgoklt公式.在这个方法的通常应用中,下面的定理是已知的: 假设:f(n),l。是复数,!)o,:r,下,是实数,氏,吞r是正数,拜和v是)1的整数,r是,111-ma函数,及元t<又:<·… 一)对于任意。>o,f(n)<
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条