1) generalized Bernoulli polynomials of higher order
广义高阶Bernoulli多项式
1.
In this paper,we apply the generating function method to obtain some relationships between generalized Bernoulli polynomials of higher order and Euler polynomials of higher order,therefore we deduce some corresponding special cases.
利用发生函数的方法得到了广义高阶Bernoulli多项式和广义高阶Euler多项式之间的关系,并由此得到了一些特殊情况包括高阶Bernoulli多项式和高阶Euler多项式之间的关系。
2) polynom ials
广义m阶Euler-Bernoulli多项式
3) generalized n-th-order Bernoulli polynomial
广义n阶Bernoulli多项式
4) the generalized Bernoulli polynomials
广义Bernoulli多项式
5) the generalized Apostol-Bernoulli polynomials
广义Apostol-Bernoulli多项式
1.
In the second chapter,we give several symmetric identities on the generalized Apostol-Bernoulli polynomials by applying the generating functions.
第二章,应用生成函数,得到若干关于广义Apostol-Bernoulli多项式的对称恒等式,这些结果推广了一些已知的恒等式。
6) higher order Bernoulli polynomials
高阶Bernoulli多项式
1.
Using the method of generating function,short computational formulas of higher order Bernoulli polynomials and higher order Euler polynomials are given by two Stirling numbers of the first kind.
使用发生函数方法,利用两种第一类Stirling数给出高阶Bernoulli多项式和高阶Euler多项式的简捷计算公式。
2.
In this paper, A new kind of computational formulas of higher order Euler polynomials and higher order Bernoulli polynomials are given by using Stirling number, these formulas have a good structure and are easy to apply.
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。