说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基样条法
1)  spline-based method
基样条法
1.
By taking cubic spline function as an example,the study of the approximation of spline-based method and three-moment method and the analysis of their merits and their similarities and differences can be used in the wider application of best approximation in many practical problems.
本文以三次样条函数为例,研究基样条法和三弯矩法的逼近程度,分析它们的优劣及二者的异同,以便在许多实际问题中更广泛地应用最佳逼近。
2)  B spline
B样条基
1.
In The uniform B spline with shape parameter of seven order is given.
给出了带形状参数的七阶均匀B样条基函数,使七阶均匀B样条基函数是它的一个特例。
2.
In this paper the uniform B Spline with shape parameter of five degree was given,of which the uniform B Spline of five degree is a special example.
给出了五阶带形状参数的均匀B样条基函数 ,使五阶均匀B样条基函数成为它的一个特例 。
3.
Gives the uniform B spline with shape parameter of six order.
给出了带形状参数的六阶均匀B样条基函数;使六阶均匀B样条基函数成为它的一个特例。
3)  cardinal Spline
基数样条
1.
The study on the construction of high cardinal Spline function;
关于高次基本基数样条函数构造的研究
4)  cardinal spline
基样条
1.
In the method, partial cubic cardinal spline function is chosen as weight function (?)(x) in the Shepard formula which is (?)(x)∈C2 and has good attenuation characteristics.
该方法以局部三次基样条函数作为Shepard公式中的权函数,新的权函数具有良好的衰减性和二阶连续性,从而改进了传统方法的不足之处,使实际应用效果更好。
2.
In this paper,according to the property of cardinal spline interpolation,we constructed a kind of spline form matrix valued rational interpolation,which based on cardinal spline.
我们根据基样条插值的性质构造了一种样条型的矩阵值有理插值 ,这种插值形式避免了高次Lagrange多项式插值的不稳定性 ,给出了一种实用的公
3.
In this paper we show that the necessory condition for which ‖ s mf-f‖ p→0(m→∞) is f∈B π,p , where B π,p =B π∩L p ( R ) and B π denotes the subset of all entire functions of exponential type π which are bounded on R , and s mf is the unique cardinal spline of degree m-1 interpolating to f at integers.
本文证明了‖smf-f‖ p→ 0 ( m→∞ )的必要条件是 f∈ Bπ,p,其中 Bπ,p=Bπ∩ Lp( R) ,Bπ表示指数 π型的整函数在R上限制是有界函数所构成的集合 ,smf 是在整数点对 f 插值的唯一确定的 m-1次基样条 。
5)  cardinal spline-on-spline
叠基样条
1.
In this paper,A simply method for calculating coefficient of Asymptotic expansion form of even cardinal spline-on-spline interpolation is obtained by taking advantage of difference quotient expression methods of complex functions,and the recurrence formula of Asymptotic expansion form coefficient of twice and quadrtic cardinal spline-on-spine interpolation is resolved.
利用复变函数关于差商的表示法得出了偶次叠基样条插值误差的渐近展开式系数的简易计算法 ,并利用算符运算法给出了叠二次、叠四次基样条渐近展开式系数的递推公式。
6)  B-spline basis
B-样条基
1.
The transformation between the B-spline basis and the truncation basis of the cubic spline functions;
样条函数的B-样条基和截断幂基表示之间的转换
2.
However, the B-spline basis is not orthogonal, this thesis discusses the orthogonalbasis in 3-degree spline space.
但是,B-样条基不是正交基。
补充资料:B样条曲面


B样条曲面
B-spline surface

B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条