2) analytical approximation
解析逼近
1.
By combining the Newton method with the method of harmonic balance(HB),we have established improved analytical approximations to the period and the corresponding periodic solution to the non-linear Jerk equations.
将牛顿线性化方法与谐波平衡法组合起来建立一类非线性Jerk方程周期及周期解的改进解析逼近。
2.
Based on the analytical approximations to period of nonlinear oscillators with even potential functions,a new analytical approximate period to nonlinear oscillators with general potential functions is established.
利用具有偶势能函数非线性振子周期的解析逼近,建立具有一般势能函数的非线性振子周期的解析逼近,所构造的解析逼近不仅收敛速度快,而且能够建立具有一般势能函数的分段非线性振子周期的解析逼近。
3.
The new analytical approximations for the buckling load and the largest deflection of the Euler\'s column show an excellent agreement with the numerically exact ones,and are valid over nearly the whole range of the independent variable.
基于Euler杆大挠度屈曲的控制方程,构造了屈曲载荷及最大挠度的高精度解析逼近解。
4) approximate solutions
逼近解
1.
The new iterative algerithms for approximate solutions to completely generalized strongly nonlinear quasi complementarity problems in Hilbert spaces are studied and constructed.
研究并构造了Hilbert空间中完全广义强的非线性拟补问题的逼近解的新的迭代算法。
2.
Accordingly,some approximate solutions of eigenvalues and eigenfunctions are given.
最后展示了一个具体问题的特征值以及特征函数的逼近解。
5) approximate solution
逼近解
1.
Convergence of approximate solutions in stochastic programming.;
随机规划逼近解的收敛性
2.
Convergence of approximate solutions in Bi-level stochastic programming;
二层随机规划逼近解的收敛性
3.
Consequently,approximate solution can be obtained for the maximum-concurrent flow and it can be ensured to be optimal.
解决了网络流优化的快速数值逼近算法的稳定性问题,从而保证了用O(k(ε-2+lgk)lgn)个单个流的最小成本流的计算,来定性计算最大共存流的逼近解(其中:k是共存流数,n是节点数,而ε是精度要求)是优化的。
6) approximation solution
逼近解
1.
By using the monotone iterative technique and the method of upper and lower solutions, the unique solution is obtained by the uniformly limit of the iterative sequence, and the error estimate of the iterative sequences of approximation solutions is given.
本文在抽象空间中研究了不连续二阶常微分方程组解的存在唯一性,利用单调迭代方法和上下解方法证明了方程组的唯一解可以由迭代序列的一致极限得到,并给出了逼近解的迭代序列的误差估计式。
补充资料:Diophantus逼近的度量理论
Diophantus逼近的度量理论
Jophantine approximation, metric theory of
研究具有特殊逼近性质的数的度量性质的一个数论分支(见】》材.山.通近(侧。phi功位℃aPProxll们a-tio招);数的度,理论(n坦让沁tl以〕ryofn坦川比巧)).这个理论最初的定理之一是为阳气阳定理(Khinc沥nt坛”咖)([l],【2]),按现代形式([3]),它可以描述如下.设势(q)>0是对整数q>O定义的一个单调递减函数,那么对几乎所有的实数a,不等式”“酬<势(q)在整数q>O中有无穷多个解,如果级数 乏职(;)(一) q=l发散;或者只有有限多个解,如果级数(l)收敛(这里及以后,{}xJ{表示x到最近整数的距离,即 {}xI{二m}x一aI,其中极小是取在所有整数“上的,“几乎所有”是指在相应空间的此比阅世测度意义下).这个定理描述了几乎所有实数用有理数逼近的精度.例如,对几乎所有戊,存在无穷多个有理逼近a/q满足不等式二 l“一a/。}<丁卜 一,1一了Inq 一一一一一一一一一一一一一一一一反之,对任意£>0,不等式 !:一a/;l<,二共下 ’一‘’一州殉),+:只能对测度为零的数“的集合有无穷多解. 这个定理到联立逼近的推广(【31)如下所述.不等式组 rnax(}}::9 11,…,11:,,}})<中(叼)(2)对几乎所有(“1,…,气)‘R”有有限个解还是无穷多个解,依赖于级数 乌价”(q)(3)收敛还是发散. 还可进一步推广到多个整数变量的不等式组的情形(见[5]). X姐.气叨王定理和它的很多推广的一个突出特征在于:形式为(l),(3)的级数的“收敛一发散”性质可以作为一个准则来区分相应的逼近阶适用于测度为零的数还是几乎所有的数的集合.它是D沁Phall油逼近的度量理论中的一种“O·1”定律.这些推广的另一特征是把所涉及的数的度量性质归之于在包含参与逼近的数的整个空间中所定义的测度,而且空间的测度被定义为坐标空间测度的乘积.例如,在组(2)的情形下,人们讲到n个“独立”数的逼近以及在r=R冲二xR(n个)中的助比阅沸测度.因此,这一部分理论被称为独立变量D沁p址m如逼近的度量理论.它已经有了很好的发展,但是到目前(1988)为止还有一些没有解决的问题.这些问题之一是对区间【O,11上的可测集合序列A(q)(q=1,2,…)必须加上怎样的条件,才能使得级数艺,}A(的}收敛或发散,与此相应的是,对几乎所有的数“,条件“qeA(q)洲劝l被有限多次还是无穷多次满足.对一组数(:q,’·‘,“。q)也有类似的问题([41). 相关变量的1)心p扯口奴万逼近的度量理论发展较晚,它直接产生几个基本的和独特的问题(【5]).首先起源于超越数论(Malder猜想(M公iler col刀川眠))并与对数组t,…,广的有理联立逼近有关,这里是对几乎所有的数t和固定的自然数n,关于这个课题,最近得到一个结果如下、设毋(的>O是一个单调递减函数,并且级数 艺毋(g)/。 q,1收敛,那么对几乎所有的t,不等式组 ~(}}t叼}{,…,}!t”叼!{)<中.(叮)/叮.只有有限多个整数解q>O(【71). 这个定理确信,对曲线rCR”上几乎所有的点可以用有理数逼近.考虑r中更一般的流形,将产生类似的结果. 如果流形r上(按着r上的测度)几乎所有的点(气,一,气),使得取试q)‘q一’加一‘的不等式组(2)有有限多个整数解g>O,其中。>0是任意的,那么r称为极端的(以加掀词),即几乎所有的点只允许最坏的有理联立逼近.5山叮团t定理(S比.记t thcorefn)指出,如果r是RZ中的曲线,并在它的几乎所有点上具有非零的曲率,则它是极端的(〔8]). 应用三角和法(见三角和法(州即加皿仃记stur‘,n正击记of);亦见E..orpa口.法(V如幻脚dovn犯t饭对))有可能发现R”中非常一般的流形r在拓扑维数由mr)粤的条件下的极端性.另一方面,如果dimr<要, 2一‘们”’-一、’.”一”一’-一””一’-一一二一2’则极端流形不可能是太一般的,它的构造将很容易确定(〔91).1致喇.曲.通近的度t理论【口吻抽响..即.劝.6团,.以康伪曰料成;压.中姗~冲.肠.狱朋‘Merp。-峨盆a.T加p一。l
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条