1) adjacent strong vertex-distinguishing
邻点强可区别
1.
A total coloring approach is given for C3m×C3n、C4m×C4n graph and the adjacent strong vertex-distinguishing total coloring is proved.
给出了图C3m×C3n、C4m×C4n的一种全染色方法,并证明了该染色是邻点强可区别的,从而得到了C3m×C3n、C4m×C4n的邻点强可区别的全色数:aχst(C3m×C3n)=6、aχst(C4m×C4n)=6。
2) adjacent strong edge chromatic number of adjacent vertex-distinguish graph
邻点可区别邻强边色数
3) adjacent-vertex strongly-distinguishing total coloring
邻点强可区别全色数
4) adjacent strong vertex-distinguishing total coloring
邻点可区别的强全色数
1.
Suppose f is a proper total coloring of G which use k colors,for uv∈E(G), it s satisfied C(u)≠C(v),where C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)}, then f is called a k adjacent strong vertex-distinguishing total coloring of graph G(k-ASVDTC for short)and χ ast (G)=min{k|k-ASVDTC of G} is called the chromatic number of adjacent strong vertex-disting.
设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数 。
5) adjacent vertex-distinguishing
邻点可区别
1.
A total coloring approach is given for Cm×Cn graph and the adjacent vertex-distinguishing total coloring is proved.
给出了图Cm×Cn的一种全染色方法,并证明了该染色是邻点可区别的,从而得到了Cm×Cn的邻点可区别的全色数:aχt(Cm×Cn)=6。
2.
A total coloring approach is given for Pm×Cn graph and the adjacent vertex-distinguishing total coloring is proved.
给出了图Pm×Cn的一种全染色方法,证明了该染色是邻点可区别的,得到了Pm×Cn的邻点可区别全色数:xat此结果尚未见其他文献报道。
3.
Based on the classification of the degree of a graph,this paper proved that every graph without K_2 of minimum degree at least 188 permits an adjacent vertex-distinguishing 3-edge partition.
研究了图的邻点可区别边划分所需要的最少边色数。
6) vertex-edge adjacent vertex-distinguishing total coloring
点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
补充资料:卢照邻
卢照邻(约636~695后) 中国唐代诗人。字升之,自号幽忧子。生卒年史无明载。幽州范阳(今河北涿州)人。与王勃、杨炯、骆宾王并称初唐四杰。博学能文。由于政治上坎坷失意和长期病痛折磨,自投颍水而死。他擅长诗歌、骈文。诗以歌行体为最佳。意境清迥,以韵致取胜。代表作如《长安古意》,借古讽今,寄慨深微,耐人寻味,词句清丽,委婉顿挫。是初唐长篇歌行的佳作。其集今存《卢升之集》、《幽忧子集》均7卷。徐明霞点校《卢照邻集》即据后者,并作《补遗》。《全唐诗》存其诗2卷。傅璇琮著有《卢照邻杨炯简谱》。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条