1) Orthogonal sequence pair set
正交序列偶集
2) orthogonal sequence set
正交序列集
1.
It is presented that the sequence signal is expressed by orthogonal sequence set.
提出了将序列信号分解成正交序列集表示,证明了正交序列集{ej2πNkn(n=0,1,…,N-1),(k=0,1,…,N-1)}是完备正交序列集,将周期序列信号x(n)分解成完备正交序列集{ej2πkNn(n=0,1,…,N-1),(k=0,1,…,N-1)}表示而定义为离散傅里叶级数,由离散傅里叶级数导出离散傅里叶变换定义。
3) Mutually orthogonal sequence sets
相互正交序列集
5) sequence pairs set
序列偶集合
1.
Combined with the theory of generalized quasiorthogonality (GQO)codes and sequence pairs, this paper defines a new sequence pairs set,whice is generalized quasiorthogonality sequence pairs set(GQOPS),and discusses the properties of GQOP,GQOPS.
本文在广义准正交码的基础上,应用序列偶的思想,定义了一类新的序列偶集合-广义准正交序列偶集,并讨论了广义准正交序列偶集中单个、两个序列偶间以及整个序列偶集的性质。
6) orthogonal sequence
正交序列
1.
The complete complementary codes that are composed of multiphase orthogonal sequences can satisfy the condition of ideal address code very well.
近年来,CDMA通信系统中地址码容量过小的问题愈发突出,而多相序列的提出为这个问题的解决开辟了一条新途径,这是因为由多相正交序列组成的完全互补码可以很好地满足最佳地址码的要求。
2.
In this paper, a kind of polyphase orthogonal sequence s structure method and its properties are stu died.
针对CDMA系统对地址码的要求,根据FH序列的性质和Naoki Suehiro提出的多相正交序列构造理论,系统地给出了一种多相正交序列的构造方法,对序列的性质进行了较深入的研究,并预测出此类序列的相关特性以及序列的个数,都能较好地满足扩频码的要求。
补充资料:〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗
〖ZK(〗各证集说诸方备用并五脏六腑集论合抄〖ZK)〗
内科著作。1卷。原题清叶桂(天士)家传,撰年不详。此书汇集内科杂证70余种,方剂近200首。每证各为一论,阐明疾病性质、病因、症状、治则及方药。论后每引经说,概括病机。所列方药服法亦皆详备。又列“五脏六腑论”一章,引用《内经》、《难经》,逐一论述五脏六腑之形象、部位、表里关系、病症及治法。本书内容多录自《临证指南》,恐系后人伪托叶氏之作。现存抄本
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条