1) nonlinear programming with equality constraint
等式约束非线性规划
1.
The projection method with Hessian matrix used to solve nonlinear programming with equality constraint is analyzed and the reason why the method is superlinear convergent by two steps is found out.
分析了求解等式约束非线性规划问题的投影Hessian矩阵算法,找出了算法两步Q-超线性收敛的原因,并用BYRD的例子说明此算法的收敛效果较差,即甚至不是线性收敛;对算法进行了合理的改进,并用改进后的算法求解BYRD问题,得到了满意的收敛效果,即Q-超线性收敛。
3) nonlinear constrained programming
非线性约束规划
1.
Application of chaos optimization algorithm to nonlinear constrained programming;
混沌优化算法在非线性约束规划问题中的应用
2.
Solving the global optimal solution for nonlinear constrained programming is difficult.
求解非线性约束规划的全局最优解是一个难点。
3.
It is difficult to handle constrained conditions in solving nonlinear constrained programming.
在求解非线性约束规划问题中,对其约束条件的处理是一个难点问题。
4) constrained nonlinear programming
约束非线性规划
1.
Parameter optimization of excitation system based on constrained nonlinear programming;
基于约束非线性规划的励磁系统参数优化
5) constrained nonlinear programming (CNP)
约束约束非线性规划
6) nonlinear equality constraints
非线性等式约束
1.
The descending dimension method is studied for the nonlinear programming problems with linear and nonlinear equality constraints.
本文研究线性和非线性等式约束非线性规划问题的降维算法。
2.
By using projection matrix, conditions are given on the scalar in the conjugate gradient direction to ensure that the generalized conjugate gradient projection direction is descent, and a generalized conjugate gradient projection method for nonlinear optimization with nonlinear equality constraints is presented.
利用投影矩阵,对求解无约束规划的共轭梯度算法中的参数βk给一限制条件确定βk的取值范围,以保证得到目标函数的共轭梯度投影下降方向,建立了求解非线性等式约束优化问题的共轭梯度投影算法,并证明了算法的收敛性。
3.
We present a new algarithm for soling nonlinear programming subject to nonlinear equality constraints with simple bounds in this paper,by use of the generalized reduced gradient restortion and feasible restoration.
对于具有非线性等式约束且变量有界的非线性规划问题,提出了一个由三阶段组成的广度既约梯度变位算法,即线性近似、既约梯度求极小和可行变位阶段。
补充资料:等式约束
分子式:
CAS号:
性质:对优化问题中目标函数自变量的取值用等式加以限制的约束。例如优化问题minf(x),x∈En,Ax=M,Bx>N,Ax=M即是等式约束。
CAS号:
性质:对优化问题中目标函数自变量的取值用等式加以限制的约束。例如优化问题minf(x),x∈En,Ax=M,Bx>N,Ax=M即是等式约束。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条