1) continuous Bernoulli-Euler beam
连续Bernoulli-Euler梁
2) Euler-bernoulli beam
Euler-Bernoulli梁
1.
A local point interpolation meshless method for Euler-Bernoulli beam;
Euler-Bernoulli梁的无网格LPIM解法
2.
Vibration isolation performance of floating slab track based on double Euler-Bernoulli beam theory
基于双层Euler-Bernoulli梁理论的浮置板轨道隔振研究
3.
The tendon is respectively modeled as a linear Euler-Bernoulli beam and a nonlinear beam which is undergoing coupled transverse and axial motion .
提出了新的更加符合实际的边界条件,分别采用线性的Euler-Bernoulli梁和非线性梁模型,分析了在不同的张力腿长度和平台激励条件下,线性张力腿模型与非线性模型在预测其动力响应时所得结果的差异。
3) Bernoulli-Euler beam
Bernoulli-Euler梁
1.
Frequency characteristic of rotational Bernoulli-Euler beam of a flexibility manipulator;
转动弹性机械臂Bernoulli-Euler梁频率特性
2.
For the Bernoulli-Euler beam of double-link flexible Manipulator in vertical plane as study object,distributing parameter dynamic equation is established by Lagrange equation in cantilever beam mode and it can be used for numerical simulationz.
以竖直平面内双连杆弹性机械臂Bernoulli-Euler梁为对象,用Lagrange方程建立了双连杆弹性机械臂悬臂梁模式分布参数动力学方程,并进行离散化,得出可进行数值仿真的动力学方程。
3.
Based on the characteristics of the output wave shape in the impulse measurement experimentation by using pendulum apparatus,the pole of the pendulum apparatus is regarded as the Bernoulli-Euler beam.
针对采用冲击摆测量微小冲量实验中角编码器输出波形的特点,将冲击摆系统中的摆杆看成是Bernoulli-Euler梁,从而通过对Bernoulli-Euler梁在冲击载荷作用下的横向振动分析,合理解释了角编码器输出信号的失真现象;分析了实验过程中振动的影响因素,提出了减小振动的相应改进措施;通过实验验证了改进措施的可行性。
4) Bernoulli-Euler thin-walled beam
Bernoulli-Euler薄壁梁
1.
The exact dynamic transfer matrix is derived for a straight and uniform Bernoulli-Euler thin-walled beam element whose elastic and inertial axes are not coincident by directly solving the governing differential equations of motion of the beam.
通过直接求解均匀Bernoulli-Euler薄壁梁单元自由振动的控制运动微分方程,推导了其精确的动态传递矩阵。
2.
The dynamic transfer matrix of axially-loaded uniform Bernoulli-Euler thin-walled beam element was derived by solving the governing motion differential equation of beam.
通过直接求解轴向受载的单对称均匀Bernoulli-Euler薄壁梁单元弯扭耦合振动的运动微分方程,推导了其动态传递矩阵。
5) Euler-Bernoulli beam equation
Euler-Bernoulli梁方程
1.
This paper discussed the initial-boundary problem of Euler-Bernoulli beam equation with memory.
讨论具记忆项的Euler-Bernoulli梁方程的初边值问题。
2.
A differential operator arisen from an Euler-Bernoulli beam equation under boundary shear force feedback control is studied.
讨论了一个在边界上有剪力反馈控制的Euler-Bernoulli梁方程,证明了其广义本征函数生成的根子空间在能量Hilbert空间中是完备的。
6) nonuniform Euler-Bernoulli beam
非均质Euler-Bernoulli梁
补充资料:Bernoulli equation
分子式:
CAS号:
性质:理想流体宏观运动中机械能守恒的数学表达式。其内容为:当流体流动不产生摩擦(即理想流体)时,流体的位能、静压能和动能之和为一常数。这三种能量可以互相转换,但总量不变。数学形式为 常数,式中z为距离基准面的高度,p为静压力,u为流速,g为重力加速度,ρ为流体密度。方程式各项的单位为N·m/kg。实际流体存在着摩擦,当有外功加入系统时则实际流体的能量守恒定律应将伯努利方程式改为,式中w为外加功,∑hf为第一截面到第二截面的摩擦损失,下标1、2分别代表截面1和2。
CAS号:
性质:理想流体宏观运动中机械能守恒的数学表达式。其内容为:当流体流动不产生摩擦(即理想流体)时,流体的位能、静压能和动能之和为一常数。这三种能量可以互相转换,但总量不变。数学形式为 常数,式中z为距离基准面的高度,p为静压力,u为流速,g为重力加速度,ρ为流体密度。方程式各项的单位为N·m/kg。实际流体存在着摩擦,当有外功加入系统时则实际流体的能量守恒定律应将伯努利方程式改为,式中w为外加功,∑hf为第一截面到第二截面的摩擦损失,下标1、2分别代表截面1和2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条