1) Euler-Bernoulli equation
Euler-Bernoulli方程
1.
The initial value problems for a Boussinesq equation and a Euler-Bernoulli equation are established in the following Sobolev spaceFirstly, in this minus index Sobolev space, we prove the Sobolev multiplying lemma by using microlocal analysis.
在相同的Sobolev空间中,第三章研究了Euler-Bernoulli方程 u_(tt)+αu_(xxxx)+2bu_t+cu=f(u),t≥0,x∈[0,+∞)的初值问题。
2) Euler-Bernoulli beam equation
Euler-Bernoulli梁方程
1.
This paper discussed the initial-boundary problem of Euler-Bernoulli beam equation with memory.
讨论具记忆项的Euler-Bernoulli梁方程的初边值问题。
2.
A differential operator arisen from an Euler-Bernoulli beam equation under boundary shear force feedback control is studied.
讨论了一个在边界上有剪力反馈控制的Euler-Bernoulli梁方程,证明了其广义本征函数生成的根子空间在能量Hilbert空间中是完备的。
3) nonlinear Euler-Bernoulli equation
非线性Euler-Bernoulli方程
4) Euler-Bernoulli viscoelastic equation
Euler-Bernoulli粘弹性方程
5) bernoulli equation
Bernoulli方程
1.
Application of the function transform method in solving Bernoulli equation;
函数变换法在求解Bernoulli方程中的应用
2.
Based on the Bernoulli equation,the distribution of nano-particles of nitride iron magnetic fluid under the horizontal magnetic fields was investigated.
根据Bernoulli方程研究氮化铁磁性液体的表观密度,将磁性液体置于由FD-FM-A磁天平的两个励磁线圈产生的磁场下进行实验研究。
3.
This paper systematically summarizes three me thods for Bernoulli equation.
文章系统总结了 Bernoulli方程的三种解法 。
6) Euler-bernoulli beam
Euler-Bernoulli梁
1.
A local point interpolation meshless method for Euler-Bernoulli beam;
Euler-Bernoulli梁的无网格LPIM解法
2.
Vibration isolation performance of floating slab track based on double Euler-Bernoulli beam theory
基于双层Euler-Bernoulli梁理论的浮置板轨道隔振研究
3.
The tendon is respectively modeled as a linear Euler-Bernoulli beam and a nonlinear beam which is undergoing coupled transverse and axial motion .
提出了新的更加符合实际的边界条件,分别采用线性的Euler-Bernoulli梁和非线性梁模型,分析了在不同的张力腿长度和平台激励条件下,线性张力腿模型与非线性模型在预测其动力响应时所得结果的差异。
补充资料:Bernoulli方程
Bernoulli方程
Bemoulli equation
取m叨肠方程【E短.目目Uequa柱皿;鞠叫胭y脚.,..1 一阶常微分方程 a。(x)y‘+a.(x沙=f(x沙“,其中“是不等于0或l的实数,这个方程首先是由J.Bernoulli研究的(〔l]).经代换尹一“二:,可将Bemoulli方程化为一阶线性非齐次方程(12】).如果“>0,则价moulli方程的解是y二O;如果0<“<1,则在某些点上,方程的解不再是单值的.考虑形如 tf妙)x+g妙)x“卜‘=h(y),a沪o,一的方程,如果把其中的y看成自变量,把x看成y的未知函数,则此方程也是Bemoulll方程.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条