1) Fuzzy Stochastic Differential Equation
模糊随机微分方程
1.
Existence and Uniqueness of Solutions for Fuzzy Stochastic Differential Equations
模糊随机微分方程解的存在唯一性
2) fuzzy stochastic differential equations of It(o|^)-type
It(o|^)型模糊随机微分方程
3) Fuzzy differential equations
模糊微分方程
1.
By the parametric representation, fuzzy number means a bounded continuous curve in the two-dimensional metric space R2, so that it is easy to analyze fuzzy differential equations.
在此参数表示下,模糊数可直接视为二维度量空间R2中的有界连续曲线,这给分析模糊微分方程带来了便利。
2.
The fuzzy differential equations are a kind of condition equation containing the unknown function it s differential and the known fuzzy function or fuzzy constant.
模糊微分方程是未知函数及其导数与已知模糊函数或者模糊常数的条件等式,方程解的模糊性是由已知模糊函数或模糊常数所引起的。
3.
In this paper, we discuss the relations between approximate solutions and solutions for the initial value problems of the fuzzy differential equations by the embedding theorem of fuzzy number space.
本文利用模糊数的嵌入定理,讨论了模糊微分方程初值问题的近似解和解的关系,推广了前人已有的结果。
4) Fuzzy differential equation
模糊微分方程
1.
Some research on the solution to initial value problem of fuzzy differential equations;
关于模糊微分方程初值问题解的一些研究
2.
This paper studies first order single parameter fuzzy differential equation and fuzzy initial value problems for first order differential equation,presents the existence of solutions of first order fuzzy differential equation by relation of solutions of depict equation and depict parameter,and presents the expression of solutions of fuzzy differential equation by fuzzy structuring element.
研究了一阶单参数模糊微分方程和一阶微分方程模糊初值问题,利用刻画方程的解与刻画参数的关系给出了模糊微分方程解的存在条件,并利用模糊分析学的模糊结构元表述理论,给出了一阶模糊微分方程解的模糊结构元表达形式。
3.
Fuzzy integral and fuzzy differential equations are two important parts of fuzzy analysis.
模糊积分和模糊微分方程是模糊分析学的重要组成部分。
5) stochastic differential equation
随机微分方程
1.
Exponential stability of Runge-Kutta methods for a class of stochastic differential equations;
一类随机微分方程Runge-Kutta方法的指数稳定性
2.
Estimation of unknown parameter in It stochastic differential equation;
一类It随机微分方程未知参数的估计
3.
Risk analysis of flood flow in river by using stochastic differential equation;
基于随机微分方程的河道行洪风险分析
6) stochastic differential equations
随机微分方程
1.
Convergence of the Euler scheme for a class of stochastic differential equations;
一类随机微分方程欧拉格式的收敛性
2.
The stability properties of Milstein scheme for stochastic differential equations;
随机微分方程Milstein方法的稳定性
3.
Explicit expression of solution for stochastic differential equations;
有关随机微分方程解的显式表达
补充资料:模糊
1.亦作"模胡"。 2.不分明;不清楚。 3.谓草率,马虎。 4.混淆。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条