说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机微分方程组
1)  random differential equations
随机微分方程组
2)  forward-backward stochastic equation
正倒向随机微分方程组
3)  stochastic differential equation
随机微分方程
1.
Exponential stability of Runge-Kutta methods for a class of stochastic differential equations;
一类随机微分方程Runge-Kutta方法的指数稳定性
2.
Estimation of unknown parameter in It stochastic differential equation;
一类It随机微分方程未知参数的估计
3.
Risk analysis of flood flow in river by using stochastic differential equation;
基于随机微分方程的河道行洪风险分析
4)  stochastic differential equations
随机微分方程
1.
Convergence of the Euler scheme for a class of stochastic differential equations;
一类随机微分方程欧拉格式的收敛性
2.
The stability properties of Milstein scheme for stochastic differential equations;
随机微分方程Milstein方法的稳定性
3.
Explicit expression of solution for stochastic differential equations;
有关随机微分方程解的显式表达
5)  It stochastic differential equation
It随机微分方程
6)  random differential equation
随机微分方程
1.
And using perturbation moment theory,the means and variances of random differential equations for material point shift were gotten.
通过小噪声摄动理论,建立了小噪声随机微分方程。
补充资料:随机微分


随机微分
stochastic differential

  厂(xr)一厂(戈!)+丁厂,(x.一)、x、+ 十告)/‘’‘戈一,“〔‘,‘“一、、入;仁厂“、,-一.厂(、一)一厂(x一)。x一夸/’,(、一)(。xN。二:.其中IX,X」是X的二次变差.【补注】乘积dX·dy更常写作武X,Y],其中“方括号”〔X.Y}是一个具有限变差的过程,使得IX,川=戈y‘、+dX·dy(0,t].当X=Y时,得到二次变差【X,X】.它被用在本条末.实际上,它是概率二次变差:当X是标准Brown运动时,科X,XJ是玫比g口e测度,而轨道真实的二次变差几乎必然是无穷的.亦见半鞍〔s恻~m盯恤g渔le),随机积分(sto-chastic integn幻);随机微分方程(stochasticd政化丈ltialeq飞‘ltlon). 对非平坦流形连续轨道随机过程的研究,伊藤随机微分是不方便的.因为伊藤公式(2)与联系着不同坐标系的通常微分规则不相容.使用Cll)aT~姻微分(S加tono访ch di挽rentjal),可以得到一个与坐标无关的描述方法.见IAI],【A2],第5章,[A3],以及。pa1DHO助,积分{Stm飞ono访ch云negnd).随机微分障记谧拓c di场,即山l;e1Oxac侧”ec以丽皿中-咖Pe.”H幼l 一种关于随机基(0,.厂,(.汽):,。,P)的半鞍类S中的每个过程X二(X。,气,尸)用公式 (dX)I=X,一Xl=(s,t」,定义的随机区间函数dX.在随机微分族ds二{dX:X〔必中用下面公式引人过程的加法(A),过程的乘法(M)及乘积算子(P): (A)dX+dy=d(X+Y); (M)(,dX)(、。]一了:。dX(随机积分(stoch努tieintegral),中是局部有界可料过程且适应于a域流(,,),、、,)); (P)dX·dy=d(XY)一X_dy一Y_dX,其中X_和Y_是X和Y的左连续等价形. 由它得出 (dX·dy)(s,t」= 二1 .ip艺(戈一戈_.)( yt一y,_.), {A{~0!二l其中△一(s=t。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条