1) magic square matrix
幻方矩阵
1.
Methods for constructing magic square are various,especially for odd number order magic square matrix.
幻方的构造千变万化,而奇数阶幻方矩阵的构造更是多种多样,针对李尚志文献中给出的奇数阶幻方矩阵的一种独特构造,理论推导出这种构造的奇数阶幻方矩阵的通项公式,并给出了这种构造的特征。
2) Matrix Equation
矩阵方程
1.
Iterative solution to a class of matrix equation;
一类矩阵方程的迭代解法
2.
The least-square solution of the matrix equation A~TXA=D in anti-symmetric and persymmetric matrix;
矩阵方程A~TXA=D的反对称次对称最小二乘解
3.
A study of solution existence for matrix equation AX+X~TC=B;
关于矩阵方程AX+X~TC=B的解的存在性的探讨
3) matrix method
矩阵方法
1.
The generalized reflection-transmission coefficient matrix method for synthetic seismograms;
合成地震图的广义反射透射系数矩阵方法
2.
For arbitrarily spatial elastic curved rod elements with circular cross-section, a set of displacement functions fully reflecting the rigid body modes is derived using the classical elasticity theory and mathematic theories of the differential geometry and matrix methods.
利用经典弹性理论和微分几何、矩阵方法等数学理论,基于空间自然坐标系和随体坐标系,通过求解应变与位移之间关系的微分方程,得到了一种能完全反映任意空间形状圆截面曲杆单元刚体位移和常应变等模式的位移函数。
3.
3-D rigid--plastic FEM and matrix method are adopted to calculate plastic deformation of strip and elasticdeformation of rolls respectively.
利用三维刚塑性有限元法计算带钢的塑性变形,利用矩阵方法计算轧辊的弹性变形,通过两者间变形协调关系,求解出带钢出口断面形状,并能定量分析各种因素对带钢出口断面形状的影响。
4) matrix equations
矩阵方程
1.
A new method for obtaining matrix equations from operator equations: basis function expansion method;
根据算子方程得到矩阵方程的新方法-基函数展开法(英文)
2.
A necessary and sufficient condition for matrix equations and the expression of its general solutions;
矩阵方程A_(m×n)XB_(l×s)=D_(m×s)有解的一个充要条件及通解的表示
3.
The least square method is used to get the solutions to the matrix equations AX+YB=D and AX+XB=D , and a series of solutions to matrix equations are offered.
主要研究了解矩阵方程 AX+ YB=D与 AX+ XB=D的一种迭代方法 ,得到了一类矩阵方程的解
5) rectangular matrix
长方矩阵
1.
This paper spreads the notion of inversion of matrix and defines the inversion of rectangular matrix,accompanied by the discussion of its properties.
推广了矩阵的逆的概念,给出了长方矩阵的逆的定义,讨论了长方矩阵的逆的几个性质,给出了求长方矩阵的一个逆的方法。
6) directional matrix
方向矩阵
1.
So, those publications adopted the signals of different frequency to build the DOA estimation model of incoherent signals but the same center frequency in its directional matrix.
因此,在建立不相干信号的DOA估计模型时,采用不同中心频率的信号,而使用的方向矩阵却采用同一个信号频率,该文提出,当信号中心频率不同时,应采用各自相应的频率来建立方向矩阵。
补充资料:幻方
幻方
magic square
【补注】幻方是从古代起就被研究的课题,例如在公元前2仪X)年左右,在中国已经知道感阶幻方.D汕rer的名作《优郁》(M比劝choly)中便画有一个4阶幻方. 在(正交的)拉丁方(偶)(见拉丁方(助血squ-眼);正交拉丁方(。川幻即耐Latill闪ua心”与幻方之间有一种紧密的联系,这从L .E直七r(见【AI]与汇A2】)开始一直有研究.亦见【A31和那里给出的参【译注】中国南宋数学家杨辉在《续古摘奇算法》(l 275)中系统研究了幻方,他把幻方称为‘纵横图”.杨辉所介绍的幻方构作方法可推广来构作任意奇数阶幻方. 一个”阶幻方如果进一步满足要求 ‘客:。一‘象·:一‘象·卜。客·:。+1一,- =卫工卫全』舒;卫上且(二)就称为一个。阶的两次幻方.现已有了借助于正交拉丁方构作2·阶贾八爪车l),阶两次幻方丽方法([Blj). 对幻方的近期研究情况可参看【B21.幻方[.沙,,..忽;“ar,,“‘“叭p盯] 由整数l到nZ组成的,满足下列条件的n xn方形阵列l}a‘z}I: ‘乙a。一,乙a。一各a“一‘各a‘.。十:一‘一:,(·)其中s=陀(n’十1)/2.也有更广泛的幻方,对它不要求l(a。簇nZ·任何一个数a,1簇a(”2,都可被一对余数(“,口)1以对。所唯一刻画(即a一1在n进制下的两个位上的数字),这就是说,用模n的余数环Z/炸的二维空间(z/陀)’的点来刻画.由于方形阵列位置元的坐标(i,j)也可以当作(z/n)2的元素,可见从l到。’中的数在阵列”a。}}中的任何一种分布,可以由一个映射 (z/n)2~(Z/n)2来给出.这就是说,由一对函数:,“(i,j)ez/n,尹一夕(i,j卜Z/n给出,其中i,j“Z/n·问题就是去研究给出幻方的那些函数对.通常只在补充假定:及夕是线性时作这种研究(见川).特别是,已经弄明白,对于具有线性的:及刀的幻方,只在n是奇数时才存在. 布史世纪就已经发现了一些构作阶”为奇数的幻方的算法.每个这种算法都用六个余数i。,j。,p,q,歹,互刻画,并且用下列规则描述:l)把数l放到位置(i。,j。);并且2)如果a放人(i,j)且(i+夕,j+妇处仍空着则把a+1放人该处,否则,把a十1放人(i+歹,j+可).‘一余数i。J。,·p,q,歹,互不是任意的,它们必须满足一定的条件才保证不仅(,)成立,而且算法可行,这就是说,当(i+p,j+q)处已被占据时,(i十歹,j十妇是空的.容易找到这些条件(见【1』).此外,现已知道,可以用这种类型的算法构作的幻方,必须且只须用以描述它的函数“及口都是线性的. 已经知道了许多其他的构作(用非线性的仪及刀来描述的)幻方的算法,但没有关于它们的任何一般理论(1呢2).即使玲阶幻方的数目也不知道(对于n)5;n=3时,如果不重复计算由明显的对称性导致的结果,只有一个幻方,而牡=4时,有8阳个幻方). 具有附加的对称性的幻方,也只在十分特殊的状况下(例如,n《5;见[2]),有过研究.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条