说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强连通空间
1)  strongly connected spaces
强连通空间
2)  Connected Space
连通空间
1.
In this paper,the Cartesian Product of three topological spaces,compact space,connected space and A2(A1) space,were studied,and three corresponding conclusions are given.
讨论了某些拓扑空间的有限笛卡儿乘积,主要包括紧致空间、连通空间、以及A2(A1)空间。
2.
By the property of the super-distance space and the connectedness of topological space,we obtained that all of the super-distance space its subspaces and product spaces are neither connected spaces nor arcwise connected space,meanwhile the super-distance space which isn t discrete topological space isn t partially connected space.
利用超距空间的基本性质及拓扑空间的连通理论,得出超距空间及其子空间、积空间既不是连通空间,也不是弧连通空间,而非离散的超距空间不是局部连通空间。
3)  connected spaces
连通空间
1.
In this paper, a characterization of paracompact, locally compact and connected spaces is given, and an example which shows that a connected and first-countable space can not be a continuous image of a paracompact, locally compact and connected space is constructed.
刻画出仿紧、局部紧、连通空间的等价性质,并举例说明连通的第一可数空间可以不是仿紧、局部紧、连通空间的连续映像,从而否定了连通的k空间是仿紧、局部紧、连通空间的商空间的说法。
2.
In this paper k-connected spaces are introduced and characterized.
本文引进k连通空间并给出其刻画;讨论了作为空间的子空间是k连通的性质及k连通的乘积性;证明了T_2空间X是连通仿紧局部紧空间的商紧映象当且仅当X是具有点有限k系的k连通空间。
4)  arcwise connected space
弧连通空间
1.
By the property of the super-distance space and the connectedness of topological space,we obtained that all of the super-distance space its subspaces and product spaces are neither connected spaces nor arcwise connected space,meanwhile the super-distance space which isn t discrete topological space isn t partially connected space.
利用超距空间的基本性质及拓扑空间的连通理论,得出超距空间及其子空间、积空间既不是连通空间,也不是弧连通空间,而非离散的超距空间不是局部连通空间。
5)  spatial connectivity
空间连通性
6)  Volume connected region
空间连通域
补充资料:连通空间


连通空间
connected space

连通空间l~ected sPa代;姗~n详盯印曰公.劝} 不能表小成与相分离的两部分之和的拓扑空间,或更确切地说,不能表水成两个非空不交开闭子集的和空间是连通的,‘与门仪当在其L任意连续实值函数取得所有的中间值,连通空间的连续象,连通空间的积,以及在Vietoris拓扑卜连通空间的闭子集空间都是连通空间.任何连通完全正则空间的基数都不小丁连续统的基数;尽管存在寿可数连通Hau祖orff空间. B.H.M出lblx朋撰[补注1关j1Vlotorls拓扑见超空间(hyperspa此).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条