1) minimal non-p-closed group
极小非p-闭群
2) Minimal-non-p-nilpotent group
极小非p-幂零群
3) minimal non-π'-closed group
极小非π'-闭群
4) minimal non-p-abelian p-groups
极小非p-交换p-群
5) minimal {p}
极小非{p}
1.
minimal {p}
利用单群分类定理对CK3单群和极小非{p,q,r}′闭群进行了分类,并由此得到有限群具有正规{p,q,r}补的若干充分条件。
6) minimal non-nilpotent group of order p ̄aq
p~aq阶极小非幂零群
补充资料:幂零半群
幂零半群
ralpotent semi-group
幂零半群[司脚触吐涨”‘一沙叨p;。,二‘noTeoT皿明。o几犷-pyn“a] 具有零元的半群(~一脚uP)S,且存在n使得罗=0.这等价于S中的恒等式 xl”‘x。二yl‘’‘y。·对于给定的半群,满足上述性质的最小的n称为幂零级(stePof司potency)或幂零类(cla义of汕potency).如果S’=O,则S称为具有零乘法的半群(se而一groupwith~甘山拓pliCa石on).下列关于半群S的条件等价:1)S是幂零的;2)5有一个有限零化子序列(即一个有限长度的升零化子序列,见诣零半群(nil semi一grouP));3)存在k使得S的每个子半群都可作为一个长度(k的理想序列被嵌人. 更为广泛的概念是Ma月H那B意义下的幂零半群(【2』).该名称指这样的半群,对于某个。,它满足恒等式 戈,Y。,其中字戈和Y。归纳地定义如下:X0=x,Y。=y,戈=戈一:u,Y。一,Y。=欢_lu。Xn_,,这里x,夕和“。,…,“。全是变量.一个群是Ma月玉u”B意义下的幂零半群,当且仅当它在通常群论意义下是幂零的(见幕零群(面训七以gro叩)),而恒等式戈=玖等价于这样的事实:该群的幕零类簇n.满足等式戈二Y。的消去半群可嵌人到一个满足同样等式的群中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条