1) Housing area-sharing
面积分摊
1.
In this paper,the completion of planning for housing inspection process measurement of housing Floor area and the Housing area-sharing on the details of the issues discussed and put forward practical solutions and in a number of recommendations.
对房屋竣工规划验收测量过程中有关房屋建筑面积计算与房屋面积分摊的细节问题进行了探讨,并提出了实际工作中的解决方法及一些建议。
2) apportioned area
分摊面积
3) lhare by area
面积分摊法
4) area-shared percentage
面积分摊百分数
1.
Heat transfer between residential units and value analysis of area-shared percentage;
户间传热与面积分摊百分数的取值分析
5) apportion of multual building area
共用分摊面积
6) area computation and share
面积计算和分摊
补充资料:面积
面积
area
面积l眼鱿皿用.旧队肠i 为某类平面图形(如多边形)指定的数值特征,它具有如下性质:j少面积非负;2)面积可加(对于多边形,这意味着若图形p日Q由两个没有公共内点的图形尸和Q组成.则面积叉p日Q)二面积P+面积Q);3)面积在位移下保持不变;4)单位正方形的面积为1.术语“面积”也在更一般的意义一F用作三维空间中二维曲面的数值特征、。维Euclid空间或R记mann空间中k(2簇k簇n)维曲面的数值特征以及集合的边界及其他对象的数值特征,见下述 平面图形的面积(area of a Planar figure).历史L最先被确定面积的是多边形类(即可分解为有限多个无公共内点的三角形的图形).重要的是在多边形类中具有性质l)一4)的面积是存在的并且唯一的({11,121)性质1)一4)的一个直接推论是.整个图形的面积不小于它的部分的面积 在古代假定f具有性质1)一勺的面积是存在且唯一的,但没有对该类图形作明确的描述;注意力集中在计算面积的方法仁矩形(包括边长为无理数的矩形)的面积公式是基于穷蝎法(exhaustion,methodof).三角形或多边形的面积是化为矩形面积来计算的,使这个矩形与给定的三角形或多边形是由同样的全等图形组成的.可以证明([21),任何面积相等的多边形可分解成相同的若干全等图形. 后来,一类叮求方(Jordan可测)的图形被区分r出来.若平面上一图形M,对任何‘>0,总存在多边形p和Q,使尹C一M仁Q,且(面积Q一面积p)<。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条